Reading the raw data into a dataframe

Caps.df <- read.csv(paste("FAO.csv", sep=""))
#View(Caps.df)

dim(Caps.df)
## [1] 21477    63
library(psych)
## Warning: package 'psych' was built under R version 3.4.3
describe(Caps.df)
##                    vars     n    mean      sd  median trimmed    mad
## Area.Abbreviation*    1 21477   83.40   48.94   82.00   83.04  63.75
## Area.Code             2 21477  125.45   72.87  120.00  124.66  91.92
## Area*                 3 21477   87.38   49.96   87.00   87.32  63.75
## Item.Code             4 21477 2694.21  148.97 2640.00 2685.22 154.19
## Item*                 5 21477   56.70   32.90   56.00   56.38  40.03
## Element.Code          6 21477 5211.69  146.82 5142.00 5181.75   0.00
## Element*              7 21477    1.82    0.39    2.00    1.90   0.00
## Unit*                 8 21477    1.00    0.00    1.00    1.00   0.00
## latitude              9 21477   20.45   24.63   20.59   21.67  27.40
## longitude            10 21477   15.79   66.01   19.15   15.27  42.37
## Y1961                11 17938  195.26 1864.12    1.00   14.17   1.48
## Y1962                12 17938  200.78 1884.27    1.00   14.89   1.48
## Y1963                13 17938  205.46 1861.17    1.00   15.64   1.48
## Y1964                14 17938  209.93 1862.00    1.00   16.31   1.48
## Y1965                15 17938  217.56 2014.93    1.00   17.04   1.48
## Y1966                16 17938  225.99 2100.23    1.00   17.79   1.48
## Y1967                17 17938  230.42 2132.24    1.00   18.42   1.48
## Y1968                18 17938  238.42 2189.17    2.00   18.96   2.97
## Y1969                19 17938  244.34 2266.96    2.00   19.65   2.97
## Y1970                20 17938  250.26 2322.97    2.00   20.52   2.97
## Y1971                21 17938  254.24 2372.63    2.00   21.28   2.97
## Y1972                22 17938  257.45 2421.96    2.00   21.65   2.97
## Y1973                23 17938  267.32 2528.04    2.00   22.16   2.97
## Y1974                24 17938  267.13 2365.41    2.00   23.02   2.97
## Y1975                25 17938  274.44 2464.38    2.00   23.81   2.97
## Y1976                26 17938  276.57 2427.37    2.00   24.71   2.97
## Y1977                27 17938  285.96 2555.25    2.00   25.48   2.97
## Y1978                28 17938  299.79 2757.47    2.00   26.54   2.97
## Y1979                29 17938  305.84 2768.37    2.00   27.34   2.97
## Y1980                30 17938  305.67 2730.43    3.00   28.09   4.45
## Y1981                31 17938  311.66 2774.27    3.00   28.90   4.45
## Y1982                32 17938  320.98 2931.21    3.00   29.91   4.45
## Y1983                33 17938  326.91 3002.93    3.00   30.25   4.45
## Y1984                34 17938  339.56 3101.63    3.00   31.40   4.45
## Y1985                35 17938  344.35 3094.24    3.00   32.28   4.45
## Y1986                36 17938  351.74 3231.48    3.00   33.12   4.45
## Y1987                37 17938  361.94 3312.10    3.00   34.26   4.45
## Y1988                38 17938  363.98 3236.74    4.00   35.47   5.93
## Y1989                39 17938  372.35 3349.60    4.00   36.12   5.93
## Y1990                40 18062  375.42 3422.82    4.00   36.26   5.93
## Y1991                41 18062  379.45 3453.92    4.00   36.51   5.93
## Y1992                42 20490  386.01 3509.29    4.00   37.48   5.93
## Y1993                43 20865  389.31 3555.65    4.00   38.44   5.93
## Y1994                44 20865  397.08 3714.32    4.00   38.91   5.93
## Y1995                45 20865  404.49 3754.28    4.00   39.62   5.93
## Y1996                46 20865  415.26 3962.39    5.00   40.64   7.41
## Y1997                47 20865  421.62 4036.10    5.00   41.33   7.41
## Y1998                48 20865  428.88 4149.06    5.00   41.69   7.41
## Y1999                49 20865  441.68 4340.53    5.00   43.35   7.41
## Y2000                50 21128  451.77 4649.58    5.00   44.28   7.41
## Y2001                51 21128  458.72 4751.60    6.00   45.35   8.90
## Y2002                52 21128  465.46 4868.63    6.00   46.24   8.90
## Y2003                53 21128  472.69 4911.22    6.00   47.43   8.90
## Y2004                54 21128  486.69 5001.78    6.00   49.46   8.90
## Y2005                55 21128  493.15 5100.06    6.00   50.37   8.90
## Y2006                56 21373  496.32 5134.82    7.00   50.90  10.38
## Y2007                57 21373  508.48 5298.94    7.00   52.48  10.38
## Y2008                58 21373  522.84 5496.70    7.00   53.32  10.38
## Y2009                59 21373  524.58 5545.94    7.00   54.03  10.38
## Y2010                60 21373  535.49 5721.09    7.00   54.82  10.38
## Y2011                61 21373  553.40 5883.07    8.00   56.52  11.86
## Y2012                62 21477  560.57 6047.95    8.00   57.50  11.86
## Y2013                63 21477  575.56 6218.38    8.00   59.31  11.86
##                       min       max     range  skew kurtosis    se
## Area.Abbreviation*    1.0    169.00    168.00  0.05    -1.23  0.33
## Area.Code             1.0    276.00    275.00  0.10    -1.05  0.50
## Area*                 1.0    174.00    173.00  0.01    -1.19  0.34
## Item.Code          2511.0   2961.00    450.00  0.49    -1.20  1.02
## Item*                 1.0    115.00    114.00  0.06    -1.15  0.22
## Element.Code       5142.0   5521.00    379.00  1.63     0.66  1.00
## Element*              1.0      2.00      1.00 -1.63     0.66  0.00
## Unit*                 1.0      1.00      0.00   NaN      NaN  0.00
## latitude            -40.9     64.96    105.86 -0.36    -0.59  0.17
## longitude          -172.1    179.41    351.51 -0.05     0.10  0.45
## Y1961                 0.0 112227.00 112227.00 32.37  1401.06 13.92
## Y1962                 0.0 109130.00 109130.00 31.41  1311.22 14.07
## Y1963                 0.0 106356.00 106356.00 29.98  1219.00 13.90
## Y1964                 0.0 104234.00 104234.00 29.52  1190.87 13.90
## Y1965                 0.0 119378.00 119378.00 32.04  1385.12 15.04
## Y1966                 0.0 118495.00 118495.00 31.46  1311.73 15.68
## Y1967                 0.0 118725.00 118725.00 31.25  1290.40 15.92
## Y1968                 0.0 127512.00 127512.00 31.40  1329.87 16.35
## Y1969                 0.0 134937.00 134937.00 32.46  1414.27 16.93
## Y1970                 0.0 131871.00 131871.00 32.11  1360.62 17.34
## Y1971                 0.0 143407.00 143407.00 33.30  1488.43 17.72
## Y1972                 0.0 147793.00 147793.00 33.83  1536.66 18.08
## Y1973                 0.0 142439.00 142439.00 32.43  1375.90 18.88
## Y1974                 0.0 118872.00 118872.00 29.36  1133.29 17.66
## Y1975                 0.0 123842.00 123842.00 29.97  1174.50 18.40
## Y1976                 0.0 126359.00 126359.00 29.45  1152.38 18.12
## Y1977                 0.0 128840.00 128840.00 29.97  1175.07 19.08
## Y1978                 0.0 142403.00 142403.00 31.14  1263.39 20.59
## Y1979                 0.0 147401.00 147401.00 31.08  1285.98 20.67
## Y1980                 0.0 151742.00 151742.00 30.40  1233.71 20.39
## Y1981                 0.0 157179.00 157179.00 30.76  1278.62 20.71
## Y1982                 0.0 172222.00 172222.00 32.22  1400.17 21.89
## Y1983                 0.0 182221.00 182221.00 31.52  1353.80 22.42
## Y1984                 0.0 187020.00 187020.00 31.42  1349.02 23.16
## Y1985                 0.0 188438.00 188438.00 31.48  1370.92 23.10
## Y1986                 0.0 189999.00 189999.00 31.71  1353.56 24.13
## Y1987                 0.0 190010.00 190010.00 31.02  1282.64 24.73
## Y1988                 0.0 189180.00 189180.00 30.25  1237.33 24.17
## Y1989                 0.0 192403.00 192403.00 30.52  1244.33 25.01
## Y1990                 0.0 201072.00 201072.00 31.10  1291.35 25.47
## Y1991                 0.0 193224.00 193224.00 30.30  1205.59 25.70
## Y1992                 0.0 197464.00 197464.00 30.73  1242.22 24.52
## Y1993                 0.0 202770.00 202770.00 30.90  1257.42 24.62
## Y1994                 0.0 204581.00 204581.00 31.89  1312.62 25.71
## Y1995                 0.0 208137.00 208137.00 31.47  1296.31 25.99
## Y1996                 0.0 210855.00 210855.00 32.59  1371.73 27.43
## Y1997                 0.0 221456.00 221456.00 33.29  1438.83 27.94
## Y1998                 0.0 229928.00 229928.00 33.12  1425.17 28.72
## Y1999                 0.0 255625.00 255625.00 34.26  1537.56 30.05
## Y2000                 0.0 311110.00 311110.00 38.81  2013.96 31.99
## Y2001                 0.0 327370.00 327370.00 39.95  2155.74 32.69
## Y2002                 0.0 352172.00 352172.00 42.34  2448.74 33.49
## Y2003                 0.0 354850.00 354850.00 42.04  2417.89 33.79
## Y2004                 0.0 360767.00 360767.00 41.81  2395.99 34.41
## Y2005                 0.0 373694.00 373694.00 42.68  2504.09 35.09
## Y2006                 0.0 388100.00 388100.00 44.38  2731.14 35.12
## Y2007                 0.0 402975.00 402975.00 44.63  2762.91 36.25
## Y2008                 0.0 425537.00 425537.00 45.58  2900.74 37.60
## Y2009                 0.0 434724.00 434724.00 46.17  2978.46 37.94
## Y2010                 0.0 451838.00 451838.00 46.88  3064.53 39.13
## Y2011                 0.0 462696.00 462696.00 46.43  3012.93 40.24
## Y2012              -169.0 479028.00 479197.00 47.18  3099.38 41.27
## Y2013              -246.0 489299.00 489545.00 46.56  3018.57 42.43
head(Caps.df)
##   Area.Abbreviation Area.Code        Area Item.Code
## 1               AFG         2 Afghanistan      2511
## 2               AFG         2 Afghanistan      2805
## 3               AFG         2 Afghanistan      2513
## 4               AFG         2 Afghanistan      2513
## 5               AFG         2 Afghanistan      2514
## 6               AFG         2 Afghanistan      2514
##                       Item Element.Code Element        Unit latitude
## 1       Wheat and products         5142    Food 1000 tonnes    33.94
## 2 Rice (Milled Equivalent)         5142    Food 1000 tonnes    33.94
## 3      Barley and products         5521    Feed 1000 tonnes    33.94
## 4      Barley and products         5142    Food 1000 tonnes    33.94
## 5       Maize and products         5521    Feed 1000 tonnes    33.94
## 6       Maize and products         5142    Food 1000 tonnes    33.94
##   longitude Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 Y1967 Y1968 Y1969 Y1970
## 1     67.71  1928  1904  1666  1950  2001  1808  2053  2045  2154  1819
## 2     67.71   183   183   182   220   220   195   231   235   238   213
## 3     67.71    76    76    76    76    76    75    71    72    73    74
## 4     67.71   237   237   237   238   238   237   225   227   230   234
## 5     67.71   210   210   214   216   216   216   235   232   236   200
## 6     67.71   403   403   410   415   415   413   454   448   455   383
##   Y1971 Y1972 Y1973 Y1974 Y1975 Y1976 Y1977 Y1978 Y1979 Y1980 Y1981 Y1982
## 1  1963  2215  2310  2335  2434  2512  2282  2454  2443  2129  2133  2068
## 2   205   233   246   246   255   263   235   254   270   259   248   217
## 3    71    70    72    76    77    80    60    65    64    64    60    55
## 4   223   219   225   240   244   255   185   203   198   202   189   174
## 5   201   216   228   231   234   240   228   234   228   226   210   199
## 6   386   416   439   445   451   463   439   451   440   437   407   384
##   Y1983 Y1984 Y1985 Y1986 Y1987 Y1988 Y1989 Y1990 Y1991 Y1992 Y1993 Y1994
## 1  1994  1851  1791  1683  2194  1801  1754  1640  1539  1582  1840  1855
## 2   217   197   186   200   193   202   191   199   197   249   218   260
## 3    53    51    48    46    46    47    46    43    43    40    50    46
## 4   167   160   151   145   145   148   145   135   132   120   155   143
## 5   192   182   173   170   154   148   137   144   126    90   141   150
## 6   371   353   334   330   298   287   265   279   245   170   272   289
##   Y1995 Y1996 Y1997 Y1998 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006
## 1  1853  2177  2343  2407  2463  2600  2668  2776  3095  3249  3486  3704
## 2   319   254   326   347   270   372   411   448   460   419   445   546
## 3    41    44    50    48    43    26    29    70    48    58   236   262
## 4   125   138   159   154   141    84    83   122   144   185    43    44
## 5   159   108    90    99    72    35    48    89    63   120   208   233
## 6   310   209   173   192   141    66    93   170   117   231    67    82
##   Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013
## 1  4164  4252  4538  4605  4711  4810  4895
## 2   455   490   415   442   476   425   422
## 3   263   230   379   315   203   367   360
## 4    48    62    55    60    72    78    89
## 5   249   247   195   178   191   200   200
## 6    67    69    71    82    73    77    76
mytable <- with(Caps.df, table(Element))
mytable 
## Element
##  Feed  Food 
##  3949 17528
mytable <- xtabs(~ Element+Area, data=Caps.df)
mytable
##        Area
## Element Afghanistan Albania Algeria Angola Antigua and Barbuda Argentina
##    Feed          10      25      22     15                  13        24
##    Food          73      98     102     94                 104        99
##        Area
## Element Armenia Australia Austria Azerbaijan Bahamas Bangladesh Barbados
##    Feed      35        27      34         28      11         15       17
##    Food      98       101     105         96     105        108      104
##        Area
## Element Belarus Belgium Belize Benin Bermuda
##    Feed      33      35     13    12      10
##    Food      98     101     99   105      93
##        Area
## Element Bolivia (Plurinational State of) Bosnia and Herzegovina Botswana
##    Feed                               20                     27       16
##    Food                              102                     97      109
##        Area
## Element Brazil Brunei Darussalam Bulgaria Burkina Faso Cabo Verde Cambodia
##    Feed     29                13       34           11          8       10
##    Food    108               107      100          104         98      106
##        Area
## Element Cameroon Canada Central African Republic Chad Chile
##    Feed       16     34                       10   16    26
##    Food      109    106                       99   87   102
##        Area
## Element China, Hong Kong SAR China, Macao SAR China, mainland
##    Feed                   27               15              39
##    Food                  106              106             107
##        Area
## Element China, Taiwan Province of Colombia Congo Costa Rica Côte d'Ivoire
##    Feed                        32       27    14         25             9
##    Food                       109      105   106        104           110
##        Area
## Element Croatia Cuba Cyprus Czechia Democratic People's Republic of Korea
##    Feed      30   36     29      30                                    20
##    Food      99  101    106      99                                    77
##        Area
## Element Denmark Djibouti Dominica Dominican Republic Ecuador Egypt
##    Feed      36        8       17                 15      29    27
##    Food     103       99       94                 97     105   107
##        Area
## Element El Salvador Estonia Ethiopia Fiji Finland France French Polynesia
##    Feed          24      36        9   20      32     37               21
##    Food         106      99      107  105     101    103              100
##        Area
## Element Gabon Gambia Georgia Germany Ghana Greece Grenada Guatemala Guinea
##    Feed    16     10      35      43    10     41      21        25     12
##    Food   104     98      98     104   110    102      99       105    100
##        Area
## Element Guinea-Bissau Guyana Haiti Honduras Hungary Iceland India
##    Feed             7     20    19       28      39      29    26
##    Food            84     99   101      104     103      96   108
##        Area
## Element Indonesia Iran (Islamic Republic of) Iraq Ireland Israel Italy
##    Feed        21                         19   25      35     30    43
##    Food       105                        101   95     101    105   105
##        Area
## Element Jamaica Japan Jordan Kazakhstan Kenya Kiribati Kuwait Kyrgyzstan
##    Feed      17    35     21         40    17        8     22         31
##    Food     102   108    106        101   110       86    100         93
##        Area
## Element Lao People's Democratic Republic Latvia Lebanon Lesotho Liberia
##    Feed                               16     36      27       6       8
##    Food                               86    100     102      69      91
##        Area
## Element Lithuania Luxembourg Madagascar Malawi Malaysia Maldives Mali
##    Feed        42         32         19     16       26        3   12
##    Food        98         95        106    104      108      101  104
##        Area
## Element Malta Mauritania Mauritius Mexico Mongolia Montenegro Morocco
##    Feed    29         11        15     25       16         21      25
##    Food   101        105       104    108       98         97     104
##        Area
## Element Mozambique Myanmar Namibia Nepal Netherlands New Caledonia
##    Feed         10      14      13    11          41            24
##    Food        104      98     108   110         100           105
##        Area
## Element New Zealand Nicaragua Niger Nigeria Norway Oman Pakistan Panama
##    Feed          28        22    15      24     37   22       26     24
##    Food         106       107   103     107    103  102      107    106
##        Area
## Element Paraguay Peru Philippines Poland Portugal Republic of Korea
##    Feed       20   25          34     33       32                27
##    Food      102  107         108    103      102               107
##        Area
## Element Republic of Moldova Romania Russian Federation Rwanda
##    Feed                  33      40                 35      8
##    Food                  97      99                102    100
##        Area
## Element Saint Kitts and Nevis Saint Lucia Saint Vincent and the Grenadines
##    Feed                     8          15                               14
##    Food                    91         100                               95
##        Area
## Element Samoa Sao Tome and Principe Saudi Arabia Senegal Serbia
##    Feed    19                     6           21      13     29
##    Food    89                    85          109     107     98
##        Area
## Element Sierra Leone Slovakia Slovenia Solomon Islands South Africa Spain
##    Feed           11       30       31               9           34    45
##    Food          100      100      101              91          106   105
##        Area
## Element Sri Lanka Sudan Suriname Swaziland Sweden Switzerland Tajikistan
##    Feed        20    10       19        14     36          35         29
##    Food       107    94       97       103    106         106         73
##        Area
## Element Thailand The former Yugoslav Republic of Macedonia Timor-Leste
##    Feed       24                                        30           9
##    Food      107                                       100          77
##        Area
## Element Togo Trinidad and Tobago Tunisia Turkey Turkmenistan Uganda
##    Feed   11                  17      21     27           24     17
##    Food  104                 100     105    101           66    110
##        Area
## Element Ukraine United Arab Emirates United Kingdom
##    Feed      38                   29             39
##    Food      96                   92            104
##        Area
## Element United Republic of Tanzania United States of America Uruguay
##    Feed                          19                       36      24
##    Food                         110                      105     100
##        Area
## Element Uzbekistan Vanuatu Venezuela (Bolivarian Republic of) Viet Nam
##    Feed         32       6                                 22       16
##    Food         91      90                                108       93
##        Area
## Element Yemen Zambia Zimbabwe
##    Feed    13     13       13
##    Food   106    107      108
par(mfrow=c(1, 3))
boxplot(Caps.df$Y1961, 
      main="Production In 1961",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1961" )
boxplot(Caps.df$Y1962, 
      main="Production In 1962",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1962" )
boxplot(Caps.df$Y1963, 
      main="Production In 1963",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1963" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1964, 
      main="Production In 1964",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1964" )
boxplot(Caps.df$Y1965, 
      main="Production In 1965",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1965" )
boxplot(Caps.df$Y1966, 
      main="Production In 1966",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1966" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1967, 
      main="Production In 1967",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1967" )
boxplot(Caps.df$Y1968, 
      main="Production In 1968",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1968" )
boxplot(Caps.df$Y1969, 
      main="Production In 1969",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1969" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1970, 
      main="Production In 1970",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1970" )
boxplot(Caps.df$Y1971, 
      main="Production In 1971",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1971" )
boxplot(Caps.df$Y1972, 
      main="Production In 1972",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1972" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1973, 
      main="Production In 1973",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1973" )
boxplot(Caps.df$Y1974, 
      main="Production In 1974",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1974" )
boxplot(Caps.df$Y1975, 
      main="Production In 1975",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1975" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1976, 
      main="Production In 1976",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1976" )
boxplot(Caps.df$Y1977, 
      main="Production In 1977",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1977" )
boxplot(Caps.df$Y1978, 
      main="Production In 1978",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1978" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1979, 
      main="Production In 1979",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1979" )
boxplot(Caps.df$Y1980, 
      main="Production In 1980",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1980" )
boxplot(Caps.df$Y1981, 
      main="Production In 1981",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1981" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1982, 
      main="Production In 1982",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1982" )
boxplot(Caps.df$Y1983, 
      main="Production In 1983",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1983" )
boxplot(Caps.df$Y1984, 
      main="Production In 1984",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1984" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1985, 
      main="Production In 1985",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1964" )
boxplot(Caps.df$Y1986, 
      main="Production In 1986",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1986" )
boxplot(Caps.df$Y1987, 
      main="Production In 1987",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1987" )

par(mfrow=c(1, 2))
boxplot(Caps.df$Y1988, 
      main="Production In 1988",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1988" )
boxplot(Caps.df$Y1990, 
      main="Production In 1990",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1990" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1991, 
      main="Production In 1991",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1991" )
boxplot(Caps.df$Y1992, 
      main="Production In 1992",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1992" )
boxplot(Caps.df$Y1993, 
      main="Production In 1993",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1993" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1994, 
      main="Production In 1994",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1994" )
boxplot(Caps.df$Y1995, 
      main="Production In 1995",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1995" )
boxplot(Caps.df$Y1996, 
      main="Production In 1996",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1996" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y1997, 
      main="Production In 1997",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1997" )
boxplot(Caps.df$Y1998, 
      main="Production In 1998",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1998" )
boxplot(Caps.df$Y1999, 
      main="Production In 1999",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y1999" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y2000, 
      main="Production In 2000",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2000" )
boxplot(Caps.df$Y2001, 
      main="Production In 2001",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2001" )
boxplot(Caps.df$Y2002, 
      main="Production In 2002",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2002" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y2003, 
      main="Production In 2003",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2003" )
boxplot(Caps.df$Y2004, 
      main="Production In 2004",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2004" )
boxplot(Caps.df$Y2005, 
      main="Production In 2005",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2005" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y2006, 
      main="Production In 2006",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2006" )
boxplot(Caps.df$Y2007, 
      main="Production In 2008",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2008" )
boxplot(Caps.df$Y2009, 
      main="Production In 2009",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2009" )

par(mfrow=c(1, 3))
boxplot(Caps.df$Y2010, 
      main="Production In 2010",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2010" )
boxplot(Caps.df$Y2011, 
      main="Production In 2011",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2011" )
boxplot(Caps.df$Y2012, 
      main="Production In 2012",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2012" )

boxplot(Caps.df$Y2013, 
      main="Production In 2013",
      col=c("yellow"),
      vertical=TRUE,
      xlab="Y2013" )

plot(Caps.df$Element, Caps.df$Y1961, 
     xlab="Element", ylab="Y1961")


plot(Caps.df$Element, Caps.df$Y2013, 
     xlab="Element", ylab="2013")

boxplot(Y1961~Element,data=Caps.df,horizontal=TRUE,ylab="Food OR Feed",xlab="Production")
axis(side=2,at=c(1,2),labels = c("Feed","Food"))

hist(Caps.df$Y1961 ,
     main="Production in Year 1961",
     xlab="Production" )

food <- Caps.df[ which(Caps.df$Element== 'Food'), ]
head(food)
##   Area.Abbreviation Area.Code        Area Item.Code
## 1               AFG         2 Afghanistan      2511
## 2               AFG         2 Afghanistan      2805
## 4               AFG         2 Afghanistan      2513
## 6               AFG         2 Afghanistan      2514
## 7               AFG         2 Afghanistan      2517
## 8               AFG         2 Afghanistan      2520
##                       Item Element.Code Element        Unit latitude
## 1       Wheat and products         5142    Food 1000 tonnes    33.94
## 2 Rice (Milled Equivalent)         5142    Food 1000 tonnes    33.94
## 4      Barley and products         5142    Food 1000 tonnes    33.94
## 6       Maize and products         5142    Food 1000 tonnes    33.94
## 7      Millet and products         5142    Food 1000 tonnes    33.94
## 8           Cereals, Other         5142    Food 1000 tonnes    33.94
##   longitude Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 Y1967 Y1968 Y1969 Y1970
## 1     67.71  1928  1904  1666  1950  2001  1808  2053  2045  2154  1819
## 2     67.71   183   183   182   220   220   195   231   235   238   213
## 4     67.71   237   237   237   238   238   237   225   227   230   234
## 6     67.71   403   403   410   415   415   413   454   448   455   383
## 7     67.71    17    18    19    20    21    22    23    24    25    26
## 8     67.71     0     0     0     0     0     0     0     0     0     0
##   Y1971 Y1972 Y1973 Y1974 Y1975 Y1976 Y1977 Y1978 Y1979 Y1980 Y1981 Y1982
## 1  1963  2215  2310  2335  2434  2512  2282  2454  2443  2129  2133  2068
## 2   205   233   246   246   255   263   235   254   270   259   248   217
## 4   223   219   225   240   244   255   185   203   198   202   189   174
## 6   386   416   439   445   451   463   439   451   440   437   407   384
## 7    26    27    27    28    29    37    32    33    31    31    29    27
## 8     0     0     0     0     0     0     0     0     0     0     0     0
##   Y1983 Y1984 Y1985 Y1986 Y1987 Y1988 Y1989 Y1990 Y1991 Y1992 Y1993 Y1994
## 1  1994  1851  1791  1683  2194  1801  1754  1640  1539  1582  1840  1855
## 2   217   197   186   200   193   202   191   199   197   249   218   260
## 4   167   160   151   145   145   148   145   135   132   120   155   143
## 6   371   353   334   330   298   287   265   279   245   170   272   289
## 7    28    26    25    23    23    23    23    24    24    18    22    20
## 8     0     0     0     0     0     0     0     0     0     0     0     0
##   Y1995 Y1996 Y1997 Y1998 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006
## 1  1853  2177  2343  2407  2463  2600  2668  2776  3095  3249  3486  3704
## 2   319   254   326   347   270   372   411   448   460   419   445   546
## 4   125   138   159   154   141    84    83   122   144   185    43    44
## 6   310   209   173   192   141    66    93   170   117   231    67    82
## 7    21    17    20    21    17    20    20    18    16    15    21    11
## 8     0     0     0     0     0     0     0     0     1     2     1     1
##   Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013
## 1  4164  4252  4538  4605  4711  4810  4895
## 2   455   490   415   442   476   425   422
## 4    48    62    55    60    72    78    89
## 6    67    69    71    82    73    77    76
## 7    19    21    18    14    14    14    12
## 8     0     0     0     0     0     0     0
feed <- Caps.df[ which(Caps.df$Element == 'Feed'), ]
head(feed)
##    Area.Abbreviation Area.Code        Area Item.Code
## 3                AFG         2 Afghanistan      2513
## 5                AFG         2 Afghanistan      2514
## 10               AFG         2 Afghanistan      2536
## 11               AFG         2 Afghanistan      2537
## 15               AFG         2 Afghanistan      2549
## 57               AFG         2 Afghanistan      2848
##                          Item Element.Code Element        Unit latitude
## 3         Barley and products         5521    Feed 1000 tonnes    33.94
## 5          Maize and products         5521    Feed 1000 tonnes    33.94
## 10                 Sugar cane         5521    Feed 1000 tonnes    33.94
## 11                 Sugar beet         5521    Feed 1000 tonnes    33.94
## 15 Pulses, Other and products         5521    Feed 1000 tonnes    33.94
## 57    Milk - Excluding Butter         5521    Feed 1000 tonnes    33.94
##    longitude Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 Y1967 Y1968 Y1969 Y1970
## 3      67.71    76    76    76    76    76    75    71    72    73    74
## 5      67.71   210   210   214   216   216   216   235   232   236   200
## 10     67.71    45    45    45    45    31    14    19    30    34    15
## 11     67.71     0     0     0     0     0    16    23    31    28     9
## 15     67.71     1     1     1     1     1     1     2     1     1     1
## 57     67.71    28    28    32    32    36    40    44    47    47    40
##    Y1971 Y1972 Y1973 Y1974 Y1975 Y1976 Y1977 Y1978 Y1979 Y1980 Y1981 Y1982
## 3     71    70    72    76    77    80    60    65    64    64    60    55
## 5    201   216   228   231   234   240   228   234   228   226   210   199
## 10     0     0    28    32    20    28    24    24    34    61    50    43
## 11    13    13     6     0     0    10    16    13     6    15     0     0
## 15     1     1     2     2     2     2     2     2     2     2     2     2
## 57    38    41    45    46    47    48    42    43    44    44    44    44
##    Y1983 Y1984 Y1985 Y1986 Y1987 Y1988 Y1989 Y1990 Y1991 Y1992 Y1993 Y1994
## 3     53    51    48    46    46    47    46    43    43    40    50    46
## 5    192   182   173   170   154   148   137   144   126    90   141   150
## 10    38    46    23    25     3    45    54    47    29    29    29    29
## 11     0     0     0     0     0     0     0     0     0     0     0     0
## 15     2     2     2     2     2     2     1     2     2     2     2     2
## 57    48    48    40    24    29    29    29    45    48    51    61    76
##    Y1995 Y1996 Y1997 Y1998 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004 Y2005 Y2006
## 3     41    44    50    48    43    26    29    70    48    58   236   262
## 5    159   108    90    99    72    35    48    89    63   120   208   233
## 10    29    29    28    28    28    29    29    29    51    50    29    61
## 11     0     0     0     0     0     0     0     0     0     0     0     0
## 15     3     3     3     2     2     3     3     3     3     3     2     3
## 57    88   101   110   114   132   106    64   128   119   121   117   112
##    Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013
## 3    263   230   379   315   203   367   360
## 5    249   247   195   178   191   200   200
## 10    65    54   114    83    83    69    81
## 11     0     0     0     0     0     0     0
## 15     3     3     5     4     5     4     4
## 57   116   113   115   114   114   121   123
agg<-aggregate(food[,11:63], by=list(Area=food$Area), sum)
head(agg)
##                  Area Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 Y1967 Y1968
## 1         Afghanistan  8761  8694  8458  9430  9753  9445 10501 10682
## 2             Albania  1612  1641  1643  1767  1789  1798  1844  1940
## 3             Algeria  7405  7141  6798  7157  7425  7481  7912  8709
## 4              Angola  4716  4657  5124  5154  5399  5549  5685  5537
## 5 Antigua and Barbuda    90    92   103    93    82    73    64    57
## 6           Argentina 33850 33231 33692 34628 36863 36206 37590 39353
##   Y1969 Y1970 Y1971 Y1972 Y1973 Y1974 Y1975 Y1976 Y1977 Y1978 Y1979 Y1980
## 1 10977  9776  9785 10439 10997 11243 11588 12274 10530 11456 11394 10986
## 2  2060  2210  2224  2290  2388  2493  2515  2758  2912  2976  2956  2975
## 3  8890  9231  9764 10519 10943 12223 13624 13678 14420 15229 16506 18040
## 4  6059  6300  6433  6327  6465  6340  6049  6251  6495  6747  6692  6752
## 5    68    75    85    57    58    56    59    55    53    57    61    72
## 6 41153 42002 41457 40072 40091 44485 44838 43626 44267 44382 45807 46865
##   Y1981 Y1982 Y1983 Y1984 Y1985 Y1986 Y1987 Y1988 Y1989 Y1990 Y1991 Y1992
## 1 10763 10542 10402  9916  9255  8515  9484  8864  8708  9220  9142  9169
## 2  3164  3286  3490  3401  3250  3460  3375  3434  3638  3859  3909  4301
## 3 18702 19084 20285 20910 23754 24494 25398 25693 27548 26932 28794 30362
## 4  7077  6861  6983  7249  7933  7458  7664  7712  7940  8035  7906  8405
## 5    75    71    72    80    77    77    77    81    81    78    77    85
## 6 46178 45043 45743 46653 48853 47676 50600 50074 48738 47363 50901 53920
##   Y1993 Y1994 Y1995 Y1996 Y1997 Y1998 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004
## 1 10207 10741 11365 12101 12963 13431 13761 13172 12763 14432 15505 15838
## 2  4699  5374  5419  5439  4902  4978  5120  5163  5390  5550  5628  5647
## 3 32016 30690 32070 31411 31546 33638 34649 34948 36547 38889 41297 44044
## 4  8262  9373  9826 10196 10278 11226 11422 11667 12787 13985 14953 15919
## 5    86    85    81    81    83    83    90    93    89    90    89    92
## 6 55594 57940 58477 59128 61363 62676 63404 62469 62955 55200 55516 54026
##   Y2005 Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013
## 1 16474 16975 17856 18087 19045 19642 19908 21184 21471
## 2  5725  5864  5785  6093  6182  6573  6780  6909  6952
## 3 45161 46468 45681 47480 52666 54267 58375 60816 63455
## 4 16882 18243 19765 21779 24465 25992 27455 27968 30121
## 5   113   108   122   115   114   115   118   113   119
## 6 57581 58116 59078 61350 60976 61534 63810 64614 65063
agg1<-aggregate(feed[,11:63], by=list(Area=feed$Area), sum)
head(agg1)
##                  Area Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 Y1967 Y1968
## 1         Afghanistan   720   720   736   740   720   724   788   826
## 2             Albania    94   108   124   122    95   197   202   229
## 3             Algeria    83    94    63    98    84    55    74   130
## 4              Angola   118   118   116   132   128   128   148   148
## 5 Antigua and Barbuda     2     2     2     2     2     0     0     2
## 6           Argentina  9552  7553  6527  7010  8073 10532  9847 11004
##   Y1969 Y1970 Y1971 Y1972 Y1973 Y1974 Y1975 Y1976 Y1977 Y1978 Y1979 Y1980
## 1   838   678   648   682   762   774   760   816   744   762   756   824
## 2   170   185   152   188   187   235   307   339   346   401   396   349
## 3   113   124   127   192   142   195   418   570   742   985  1239  1165
## 4   160   160   170   172   174   186   162   162   150   176   152   154
## 5     0     2     0     0     0     0     0     0     0     0     0     4
## 6 10876 12201 13595 13068 14990 14653 14589 13807 13493 13897 12935 10526
##   Y1981 Y1982 Y1983 Y1984 Y1985 Y1986 Y1987 Y1988 Y1989 Y1990 Y1991 Y1992
## 1   732   686   666   658   572   534   468   542   535   562   496   424
## 2   474   468   517   452   414   454   430   423   517   422   294   414
## 3  1524  2110  1985  2657  3182  3465  3292  3134  4683  3258  2812  2544
## 4   162   162   150   134   132   138   130   128   130   128   134   146
## 5     2     2     0     0     0     0     0     0     0     0     0     0
## 6 12460 13702 12914 13374 13374 12177 12982 11758 10757  9689  8629 11191
##   Y1993 Y1994 Y1995 Y1996 Y1997 Y1998 Y1999 Y2000 Y2001 Y2002 Y2003 Y2004
## 1   566   606   640   570   562   582   554   397   346   638   568   704
## 2   514   626   682   734   651   723   834   925   940   945   895   990
## 3  2464  2847  2120  2211  2094  2576  3055  2813  3428  3808  4055  4575
## 4   146   174   186   198   198   578   562  2860  4464  6260  6698  9622
## 5     0     0     0     0     0     0     0     0     0     0     0     0
## 6 14510 14129 11987  9813 11440 12181 11746 12242 11144 11153 11047 10532
##   Y2005 Y2006 Y2007 Y2008 Y2009 Y2010 Y2011 Y2012 Y2013
## 1  1184  1342  1392  1294  1616  1388  1192  1522  1536
## 2   994  1047   959  1075  1134  1334  1334  1312  1319
## 3  4401  4599  4252  3436  4839  5804  7477  8549  8706
## 4  9814 10004 10112 10274 12520 12408 13118 10096 18518
## 5     2     2     0     0     0     0     0     0     0
## 6 14735 14030 15070 14589  7446 11508 14954 11332 15780
plot(agg$Area,agg$Y1961)

hist(agg$Y1961,by = agg$Area)
## Warning in plot.window(xlim, ylim, "", ...): "by" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "by" is not a graphical parameter
## Warning in axis(1, ...): "by" is not a graphical parameter
## Warning in axis(2, ...): "by" is not a graphical parameter
#mytable <- xtabs(~Area+Y1961, data=Caps.df)
#addmargins(mytable)
#chisq.test(mytable)

#mytable <- xtabs(~Area+Y2013, data=Caps.df)
#addmargins(mytable)
#chisq.test(mytable)