Entropias com 10 repetições para cada grupo

Foram testados 6 grupos de treinamento com 100, 200, 400, 600, 800 e 1000 instâncias respectivamente.

Cada clusterização foi repetida 10 vezes e a entropia para cada experimento foi calculada usando a função do R entropy.ChaoShen().

fclust = read.csv("summaryClusterAssign.csv", header = FALSE)
library(entropy)
ent = apply(fclust, 1, function(x) entropy.ChaoShen(x))
fclust$ent <- ent
boxplot(at = c(1, 2, 4, 6, 8, 10), boxwex = 0.8, fclust$ent ~ fclust$V1, ylim = c(0.5, 
    2), xlab = "Number of instances by training group", ylab = "Shennon Entropy")

medians = c(median(fclust$ent[fclust$V1 == 100]), median(fclust$ent[fclust$V1 == 
    200]), median(fclust$ent[fclust$V1 == 400]), median(fclust$ent[fclust$V1 == 
    600]), median(fclust$ent[fclust$V1 == 800]), median(fclust$ent[fclust$V1 == 
    1000]))

lmed = lm(medians ~ c(100, 200, 400, 600, 800, 1000))
abline(lmed, col = "red")

plot of chunk unnamed-chunk-1


summary(lmed)
## 
## Call:
## lm(formula = medians ~ c(100, 200, 400, 600, 800, 1000))
## 
## Residuals:
##         1         2         3         4         5         6 
## -0.013454  0.008283 -0.000125  0.007503  0.012779 -0.014987 
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       1.33e+00   1.02e-02  129.55  2.1e-08 ***
## c(100, 200, 400, 600, 800, 1000) -1.98e-05   1.69e-05   -1.17     0.31    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0132 on 4 degrees of freedom
## Multiple R-squared:  0.255,  Adjusted R-squared:  0.0692 
## F-statistic: 1.37 on 1 and 4 DF,  p-value: 0.306

abline(lmed,col='red')

DADOS ORIGINAIS DO ARQUIVO summaryClusterAssign.csv

100,7,29,31,33

100,6,15,17,62

100,12,21,32,35

100,10,25,31,34

100,5,21,34,40

100,8,16,24,52

100,9,25,29,37

100,14,17,22,47

100,3,27,29,41

100,6,7,23,64

200,16,43,59,82

200,25,36,66,73

200,15,46,68,71

200,32,36,54,78

200,14,21,48,117

200,40,42,56,62

200,41,44,54,61

200,29,35,48,88

200,6,27,33,134

200,1,19,70,110

400,62,73,119,146

400,28,66,76,230

400,53,63,123,161

400,16,92,119,173

400,39,44,79,238

400,45,73,132,150

400,23,101,136,140

400,27,104,127,142

400,32,83,128,157

400,31,57,72,240

600,104,108,120,268

600,35,55,158,352

600,62,121,134,283

600,54,106,178,262

600,68,104,175,253

600,66,100,107,327

600,102,104,178,216

600,61,127,197,215

600,42,104,186,268

600,48,178,186,188

800,58,78,245,419

800,115,146,162,377

800,68,108,247,377

800,106,198,247,249

800,48,236,255,261

800,111,222,225,242

800,47,160,260,333

800,110,155,167,368

800,87,167,249,297

800,32,67,232,469

1000,96,215,296,393

1000,65,103,302,530

1000,28,68,325,579

1000,72,141,146,641

1000,131,165,313,391

1000,54,192,309,445

1000,83,212,337,368

1000,105,114,309,472

1000,43,237,274,446

1000,82,266,314,335