setwd("C:/Users/SURABHI/Desktop/IIM INTERNSHIP")
hotel.df <- read.csv (paste("Airnb dataset.csv", sep=""))
View(hotel.df)
dim(hotel.df)
## [1] 999 13
min(hotel.df$reviews)
## [1] 0
min(hotel.df$overall_satisfaction)
## [1] NA
min(hotel.df$accommodates)
## [1] 1
min(hotel.df$bedrooms)
## [1] NA
min(hotel.df$price)
## [1] 23
min(hotel.df$minstay)
## [1] NA
max(hotel.df$reviews)
## [1] 199
max(hotel.df$overall_satisfaction)
## [1] NA
max(hotel.df$accommodates)
## [1] 16
max(hotel.df$bedrooms)
## [1] NA
max(hotel.df$price)
## [1] 9502
max(hotel.df$minstay)
## [1] NA
median(hotel.df$reviews)
## [1] 2
median(hotel.df$overall_satisfaction)
## [1] NA
median(hotel.df$accommodates)
## [1] 4
median(hotel.df$bedrooms)
## [1] NA
median(hotel.df$price)
## [1] 103
median(hotel.df$minstay)
## [1] NA
sd(hotel.df$reviews)
## [1] 14.17979
sd(hotel.df$overall_satisfaction)
## [1] NA
sd(hotel.df$accommodates)
## [1] 2.120395
sd(hotel.df$bedrooms)
## [1] NA
sd(hotel.df$price)
## [1] 402.755
sd(hotel.df$minstay)
## [1] NA
mytable<- with(hotel.df, table(hotel.df$reviews))
mytable
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
## 315 171 89 69 49 38 25 25 20 17 23 10 10 14 12 4 8 8
## 18 19 20 21 23 24 25 26 27 28 29 30 31 32 34 36 38 39
## 6 7 8 1 4 2 1 4 2 3 2 3 2 3 2 1 4 3
## 40 41 42 43 45 48 50 51 52 54 57 60 63 67 74 76 78 80
## 1 2 2 4 1 1 2 2 1 2 1 2 2 1 1 1 1 1
## 82 88 95 97 140 199
## 1 1 1 1 1 1
mytable<- with(hotel.df, table(hotel.df$bedrooms))
mytable
##
## 0 1 2 3 4 5 6 7 8
## 158 454 227 91 36 20 6 3 1
mytable<- with(hotel.df, table(hotel.df$accommodates))
mytable
##
## 1 2 3 4 5 6 7 8 9 10 11 12 14 16
## 10 258 93 342 61 145 14 39 6 16 3 7 3 2
mytable<- with(hotel.df, table(hotel.df$minstay))
mytable
##
## 1 2 3 4 5 6 7 8 9 10 12 14 15
## 220 158 195 99 83 35 130 2 1 2 2 7 1
mytable<- with(hotel.df, table(hotel.df$overall_satisfaction))
mytable
##
## 2 3 3.5 4 4.5 5
## 1 1 14 49 205 153
mytable1<- xtabs(~price+bedrooms, data=hotel.df)
mytable1
## bedrooms
## price 0 1 2 3 4 5 6 7 8
## 23 0 4 0 0 0 0 0 0 0
## 29 0 4 0 0 0 0 0 0 0
## 30 0 1 0 0 0 0 0 0 0
## 31 1 1 0 0 0 0 0 0 0
## 32 0 4 0 0 0 0 0 0 0
## 33 0 1 0 0 0 0 0 0 0
## 34 1 1 0 0 0 0 0 0 0
## 35 1 5 0 0 0 0 0 0 0
## 36 0 1 0 0 0 0 0 0 0
## 37 1 1 0 0 0 0 0 0 0
## 38 1 0 1 0 0 0 0 0 0
## 39 1 0 0 0 0 0 0 0 0
## 40 6 6 0 0 0 0 0 0 0
## 41 2 0 0 0 0 0 0 0 0
## 43 0 4 0 0 0 0 0 0 0
## 45 0 7 1 0 0 0 0 0 0
## 46 6 9 0 0 0 0 0 0 0
## 47 1 2 0 0 0 0 0 0 0
## 48 1 4 0 0 0 0 0 0 0
## 49 2 5 0 0 0 0 0 0 0
## 50 0 2 0 0 0 0 0 0 0
## 52 4 11 0 0 0 0 0 0 0
## 53 1 1 2 0 0 0 0 0 0
## 55 1 0 0 0 0 0 0 0 0
## 56 1 4 1 0 0 0 0 0 0
## 57 5 7 0 0 0 0 0 0 0
## 58 15 28 3 0 0 0 0 0 0
## 59 2 1 0 0 0 0 0 0 0
## 60 3 3 0 0 0 0 0 0 0
## 61 1 3 0 0 0 0 0 0 0
## 62 2 2 0 0 0 0 0 0 0
## 63 3 7 1 0 0 0 0 0 0
## 64 2 2 1 0 0 0 0 0 0
## 65 1 1 1 0 0 0 0 0 0
## 66 1 3 0 0 0 0 0 0 0
## 67 0 6 0 0 0 0 0 0 0
## 68 2 5 0 0 0 0 0 0 0
## 69 10 23 4 0 0 0 0 0 0
## 70 0 2 0 0 0 0 0 0 0
## 71 2 4 0 0 0 0 0 0 0
## 72 1 2 0 0 0 0 0 0 0
## 74 3 4 0 0 0 0 0 0 0
## 75 4 9 0 0 0 0 0 0 0
## 76 1 1 1 0 0 0 0 0 0
## 77 0 1 0 0 0 0 0 0 0
## 78 0 1 1 0 0 0 0 0 0
## 79 2 4 0 0 0 0 0 0 0
## 80 10 20 7 0 0 0 0 0 0
## 81 1 1 0 0 0 0 0 0 0
## 82 0 1 0 0 0 0 0 0 0
## 83 1 1 1 0 0 0 0 0 0
## 84 0 1 0 0 0 0 0 0 0
## 85 0 5 0 0 0 0 0 0 0
## 87 0 19 4 1 0 0 0 0 0
## 89 1 2 1 0 0 0 0 0 0
## 90 2 3 0 0 0 0 0 0 0
## 91 2 9 1 0 0 0 0 0 0
## 92 8 26 10 0 0 0 0 0 0
## 93 2 6 5 2 0 0 0 0 0
## 94 1 1 0 0 0 0 0 0 0
## 96 1 0 0 0 0 0 0 0 0
## 97 0 1 0 0 0 0 0 0 0
## 98 4 9 6 0 0 0 0 0 0
## 99 0 0 1 0 0 0 0 0 0
## 101 1 1 0 0 0 0 0 0 0
## 102 1 1 4 0 0 0 0 0 0
## 103 2 11 2 0 0 0 0 0 0
## 104 7 15 5 0 0 1 0 0 0
## 105 0 0 1 0 0 0 0 0 0
## 106 2 0 0 0 0 0 0 0 0
## 107 0 2 1 0 0 0 0 0 0
## 108 0 1 1 1 0 0 0 0 0
## 109 0 2 4 0 0 0 0 0 0
## 110 0 0 1 0 0 0 0 0 0
## 111 0 1 0 0 0 0 0 0 0
## 112 1 0 0 0 0 0 0 0 0
## 113 0 2 3 0 0 0 0 0 0
## 114 1 8 4 1 0 0 0 0 0
## 115 4 16 15 4 0 0 0 0 0
## 117 0 1 0 0 0 0 0 0 0
## 119 0 0 2 0 0 0 0 0 0
## 121 0 2 1 1 0 0 0 0 0
## 123 0 1 0 0 0 0 0 0 0
## 125 0 2 1 0 0 0 0 0 0
## 126 0 3 2 0 0 0 0 0 0
## 127 2 10 6 1 0 0 0 0 0
## 129 0 0 1 0 0 0 0 0 0
## 130 0 1 0 0 0 0 0 0 0
## 131 0 1 0 0 0 0 0 0 0
## 132 0 2 1 0 0 0 0 0 0
## 133 0 1 0 1 0 0 0 0 0
## 136 0 0 2 0 0 0 0 0 0
## 137 0 2 1 1 0 0 0 0 0
## 138 1 9 9 3 0 0 0 0 0
## 139 0 1 1 1 0 0 0 0 0
## 140 0 0 1 0 0 0 0 0 0
## 143 0 1 0 0 0 0 0 0 0
## 144 1 1 2 1 0 0 0 0 0
## 145 0 2 0 0 0 0 0 0 0
## 148 0 1 1 0 0 0 0 0 0
## 149 0 3 10 3 0 0 0 0 0
## 150 0 1 2 1 0 0 0 0 0
## 153 0 0 1 1 0 0 0 0 0
## 156 0 1 2 1 0 0 0 0 0
## 160 1 1 0 0 1 0 0 0 0
## 161 0 0 2 0 0 0 0 0 0
## 162 0 3 3 1 0 0 0 0 0
## 164 0 0 1 0 0 0 0 0 0
## 165 0 0 0 1 0 0 0 0 0
## 167 0 2 2 1 0 0 0 0 0
## 168 0 0 0 1 0 0 0 0 0
## 171 0 1 3 1 0 0 0 0 0
## 172 0 3 4 0 0 0 0 0 0
## 173 2 8 12 5 1 0 0 0 0
## 180 1 0 0 0 0 0 0 0 0
## 183 0 1 0 1 0 0 0 0 0
## 184 0 1 7 2 0 0 0 0 0
## 185 0 0 1 0 0 0 0 0 0
## 190 0 0 0 1 0 0 0 0 0
## 196 0 1 3 2 0 0 0 0 0
## 197 0 0 0 1 0 0 0 0 0
## 201 0 1 0 1 0 0 0 0 0
## 207 0 0 1 2 1 0 0 0 0
## 208 0 1 2 1 0 0 0 0 0
## 212 0 0 1 0 0 0 0 0 0
## 213 0 1 1 0 0 0 0 0 0
## 214 0 0 2 1 0 0 0 0 0
## 215 0 0 1 0 0 0 0 0 0
## 218 0 1 1 2 0 1 0 0 0
## 225 0 1 2 1 0 0 0 0 0
## 230 0 3 6 4 2 0 0 0 0
## 231 3 2 3 2 1 0 0 0 0
## 247 0 0 0 1 0 0 0 0 0
## 253 0 2 4 0 0 0 0 0 0
## 259 0 0 0 1 0 0 0 0 0
## 265 0 0 0 1 0 0 0 0 0
## 277 0 0 1 0 0 0 0 0 0
## 278 0 0 1 0 0 0 0 0 0
## 287 0 3 1 3 1 1 0 0 0
## 288 0 0 0 1 0 1 0 0 0
## 290 0 0 0 0 1 0 0 0 0
## 300 0 0 0 1 0 0 0 0 0
## 305 0 0 0 0 1 0 0 0 0
## 311 0 0 0 2 0 0 0 0 0
## 316 0 0 1 0 0 0 0 0 0
## 317 0 0 1 0 0 0 0 0 0
## 322 0 0 0 0 1 0 0 0 0
## 330 0 0 0 0 1 0 0 0 0
## 331 0 0 1 0 0 0 0 0 0
## 333 0 0 0 0 1 0 0 0 0
## 345 0 1 2 3 3 4 0 0 0
## 346 0 1 0 1 0 1 0 0 0
## 356 0 0 1 0 0 0 0 0 0
## 363 0 0 0 1 0 0 0 0 0
## 368 0 0 0 0 1 0 0 0 0
## 369 0 0 0 0 2 0 0 0 0
## 374 0 2 0 0 0 0 0 0 0
## 379 0 1 0 0 0 0 0 0 0
## 391 0 0 0 1 0 1 0 0 0
## 403 1 1 2 4 0 0 0 0 0
## 404 0 0 0 0 0 1 0 0 0
## 411 0 0 0 0 1 0 0 0 0
## 426 0 0 1 0 0 1 0 0 0
## 432 0 0 0 1 0 0 0 0 0
## 438 0 0 0 1 1 0 0 0 0
## 443 0 0 0 0 1 1 0 0 0
## 449 0 1 0 0 0 0 0 0 0
## 460 0 1 0 3 1 0 0 0 0
## 461 0 0 0 0 1 0 0 0 0
## 483 0 0 0 1 0 0 0 0 0
## 490 0 0 1 0 0 0 0 0 0
## 509 0 0 1 0 0 0 0 0 0
## 515 0 0 1 0 0 0 0 0 0
## 518 1 0 2 0 0 0 0 0 0
## 576 2 0 0 2 2 0 1 0 0
## 577 0 0 1 0 0 0 0 0 0
## 599 0 0 0 0 0 1 0 0 0
## 610 0 0 0 1 0 0 0 0 0
## 611 0 1 0 0 0 0 0 0 0
## 633 0 0 0 1 0 0 0 0 0
## 645 0 0 0 0 1 0 0 0 0
## 656 0 0 0 0 0 1 0 0 0
## 683 0 0 0 0 1 0 0 0 0
## 691 0 0 1 0 1 0 1 1 0
## 724 0 0 0 0 0 0 1 0 0
## 749 0 0 0 1 1 0 0 0 0
## 760 0 0 0 1 0 0 0 0 0
## 773 0 0 1 0 0 0 0 0 0
## 800 0 0 0 0 0 1 0 0 0
## 805 0 0 0 1 0 0 0 0 0
## 806 0 0 1 1 0 0 0 0 0
## 822 0 0 0 0 0 0 1 0 0
## 823 0 0 0 0 0 0 0 0 1
## 863 0 0 0 0 0 0 0 1 0
## 864 0 0 0 0 1 0 0 0 0
## 876 0 0 0 0 1 0 0 0 0
## 921 0 0 0 0 1 0 0 0 0
## 979 0 0 1 0 0 0 0 1 0
## 980 0 0 1 0 0 0 0 0 0
## 1035 0 0 0 0 0 0 1 0 0
## 1036 0 0 0 1 1 0 0 0 0
## 1152 0 0 0 0 0 0 1 0 0
## 1261 0 0 0 0 0 1 0 0 0
## 1382 0 0 1 0 0 0 0 0 0
## 1498 0 0 0 0 0 1 0 0 0
## 1612 0 1 0 0 0 0 0 0 0
## 1727 0 0 0 0 0 1 0 0 0
## 2056 0 0 0 0 0 1 0 0 0
## 2073 0 0 0 0 1 0 0 0 0
## 2303 0 0 0 0 1 0 0 0 0
## 3283 0 0 0 1 0 0 0 0 0
## 4607 0 0 1 0 0 0 0 0 0
## 9502 0 0 0 0 1 0 0 0 0
mytable1<- xtabs(~price+accommodates, data=hotel.df)
mytable1
## accommodates
## price 1 2 3 4 5 6 7 8 9 10 11 12 14 16
## 23 3 0 0 1 0 0 0 0 0 0 0 0 0 0
## 29 0 4 0 0 0 0 0 0 0 0 0 0 0 0
## 30 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 31 0 2 0 0 0 0 0 0 0 0 0 0 0 0
## 32 0 2 1 1 0 0 0 0 0 0 0 0 0 0
## 33 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 34 0 2 0 0 0 0 0 0 0 0 0 0 0 0
## 35 2 3 1 0 0 0 0 0 0 0 0 0 0 0
## 36 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 37 0 2 0 0 0 0 0 0 0 0 0 0 0 0
## 38 0 1 0 0 0 1 0 0 0 0 0 0 0 0
## 39 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 40 1 8 1 2 0 0 0 0 0 0 0 0 0 0
## 41 0 1 0 1 0 0 0 0 0 0 0 0 0 0
## 43 1 2 1 0 0 0 0 0 0 0 0 0 0 0
## 45 0 5 1 2 0 0 0 0 0 0 0 0 0 0
## 46 0 13 2 0 0 0 0 0 0 0 0 0 0 0
## 47 0 0 1 2 0 0 0 0 0 0 0 0 0 0
## 48 0 2 1 1 1 0 0 0 0 0 0 0 0 0
## 49 0 5 1 1 0 0 0 0 0 0 0 0 0 0
## 50 1 1 0 0 0 0 0 0 0 0 0 0 0 0
## 52 0 9 1 5 0 0 0 0 0 0 0 0 0 0
## 53 0 2 0 2 0 0 0 0 0 0 0 0 0 0
## 55 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 56 0 3 1 1 0 1 0 0 0 0 0 0 0 0
## 57 0 6 1 4 1 0 0 0 0 0 0 0 0 0
## 58 0 25 6 13 1 1 0 0 0 0 0 0 0 0
## 59 0 1 2 0 0 0 0 0 0 0 0 0 0 0
## 60 0 4 0 2 0 0 0 0 0 0 0 0 0 0
## 61 0 1 1 1 1 0 0 0 0 0 0 0 0 0
## 62 0 2 0 2 0 0 0 0 0 0 0 0 0 0
## 63 0 6 1 4 1 0 0 0 0 0 0 0 0 0
## 64 0 1 0 4 0 0 0 0 0 0 0 0 0 0
## 65 0 2 1 0 0 0 0 0 0 0 0 0 0 0
## 66 0 3 1 0 0 0 0 0 0 0 0 0 0 0
## 67 0 4 0 1 1 0 0 0 0 0 0 0 0 0
## 68 0 2 2 3 0 0 0 0 0 0 0 0 0 0
## 69 0 13 5 17 2 1 0 0 0 0 0 0 0 0
## 70 0 0 1 1 0 0 0 0 0 0 0 0 0 0
## 71 0 4 0 1 0 1 0 0 0 0 0 0 0 0
## 72 0 1 0 2 0 0 0 0 0 0 0 0 0 0
## 74 0 4 0 3 0 0 0 0 0 0 0 0 0 0
## 75 0 4 1 7 0 1 0 0 0 0 0 0 0 0
## 76 0 1 1 1 0 0 0 0 0 0 0 0 0 0
## 77 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 78 0 0 1 0 0 1 0 0 0 0 0 0 0 0
## 79 0 3 0 3 0 0 0 0 0 0 0 0 0 0
## 80 0 9 5 16 3 4 0 0 0 0 0 0 0 0
## 81 0 1 0 1 0 0 0 0 0 0 0 0 0 0
## 82 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 83 0 0 1 2 0 0 0 0 0 0 0 0 0 0
## 84 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 85 0 1 0 4 0 0 0 0 0 0 0 0 0 0
## 87 0 4 3 11 3 2 0 0 1 0 0 0 0 0
## 89 0 1 0 2 1 0 0 0 0 0 0 0 0 0
## 90 0 1 1 2 0 1 0 0 0 0 0 0 0 0
## 91 0 4 2 5 1 0 0 0 0 0 0 0 0 0
## 92 1 11 4 22 2 4 0 0 0 0 0 0 0 0
## 93 0 1 1 5 3 5 0 0 0 0 0 0 0 0
## 94 0 1 0 0 1 0 0 0 0 0 0 0 0 0
## 96 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## 97 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 98 1 5 1 9 2 1 0 0 0 0 0 0 0 0
## 99 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 101 0 0 1 1 0 0 0 0 0 0 0 0 0 0
## 102 0 0 1 2 1 2 0 0 0 0 0 0 0 0
## 103 0 5 4 5 1 0 0 0 0 0 0 0 0 0
## 104 0 5 4 16 0 2 0 0 0 0 1 0 0 0
## 105 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 106 0 1 0 1 0 0 0 0 0 0 0 0 0 0
## 107 0 0 0 2 0 0 1 0 0 0 0 0 0 0
## 108 0 0 1 1 0 1 0 0 0 0 0 0 0 0
## 109 0 2 0 2 0 2 1 0 0 0 0 0 0 0
## 110 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 111 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 112 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 113 0 1 0 1 2 1 0 0 0 0 0 0 0 0
## 114 0 3 1 9 1 0 0 0 0 0 0 0 0 0
## 115 0 6 4 14 4 11 0 0 0 0 0 0 0 0
## 117 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 119 0 0 0 0 0 2 0 0 0 0 0 0 0 0
## 121 0 1 0 1 0 2 0 0 0 0 0 0 0 0
## 123 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 125 0 0 0 2 0 1 0 0 0 0 0 0 0 0
## 126 0 2 0 1 0 2 0 0 0 0 0 0 0 0
## 127 0 5 2 8 1 3 0 0 0 0 0 0 0 0
## 129 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 130 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 131 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 132 0 1 0 2 0 0 0 0 0 0 0 0 0 0
## 133 0 0 0 0 0 1 1 0 0 0 0 0 0 0
## 136 0 0 0 2 0 0 0 0 0 0 0 0 0 0
## 137 0 0 1 2 1 0 0 0 0 0 0 0 0 0
## 138 0 4 2 8 2 3 1 1 0 1 0 0 0 0
## 139 0 0 0 1 0 1 0 1 0 0 0 0 0 0
## 140 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 143 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 144 0 0 1 2 0 1 1 0 0 0 0 0 0 0
## 145 0 0 0 2 0 0 0 0 0 0 0 0 0 0
## 148 0 1 0 1 0 0 0 0 0 0 0 0 0 0
## 149 0 1 1 7 2 4 0 0 0 1 0 0 0 0
## 150 0 1 0 0 1 2 0 0 0 0 0 0 0 0
## 153 0 0 0 1 1 0 0 0 0 0 0 0 0 0
## 156 0 0 1 1 0 2 0 0 0 0 0 0 0 0
## 160 0 0 1 1 0 0 0 1 0 0 0 0 0 0
## 161 0 0 0 2 0 0 0 0 0 0 0 0 0 0
## 162 0 1 1 4 0 0 0 1 0 0 0 0 0 0
## 164 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 165 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 167 0 0 0 3 0 0 0 1 1 0 0 0 0 0
## 168 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 171 0 0 0 3 1 1 0 0 0 0 0 0 0 0
## 172 0 2 1 1 2 1 0 0 0 0 0 0 0 0
## 173 0 2 4 10 3 8 0 0 1 0 0 0 0 0
## 180 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 183 0 0 0 1 0 1 0 0 0 0 0 0 0 0
## 184 0 1 0 3 1 3 1 1 0 0 0 0 0 0
## 185 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 190 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 196 0 0 1 1 0 4 0 0 0 0 0 0 0 0
## 197 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 201 0 0 0 0 0 2 0 0 0 0 0 0 0 0
## 207 0 0 0 1 0 2 1 0 0 0 0 0 0 0
## 208 0 0 0 3 0 1 0 0 0 0 0 0 0 0
## 212 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 213 0 0 0 2 0 0 0 0 0 0 0 0 0 0
## 214 0 0 0 2 0 1 0 0 0 0 0 0 0 0
## 215 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 218 0 0 0 1 0 1 0 2 0 1 0 0 0 0
## 225 0 0 0 1 0 3 0 0 0 0 0 0 0 0
## 230 0 1 1 5 0 6 0 2 0 0 0 0 0 0
## 231 0 2 0 3 3 1 1 0 0 1 0 0 0 0
## 247 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 253 0 0 1 5 0 0 0 0 0 0 0 0 0 0
## 259 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 265 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 277 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 278 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 287 0 2 0 2 0 2 0 1 0 2 0 0 0 0
## 288 0 0 0 0 0 0 0 1 0 0 0 1 0 0
## 290 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 300 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 305 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 311 0 0 0 0 0 0 0 2 0 0 0 0 0 0
## 316 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 317 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 322 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 330 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 331 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 333 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 345 0 0 1 1 0 3 1 3 1 2 0 0 1 0
## 346 0 0 0 1 0 1 0 0 0 1 0 0 0 0
## 356 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 363 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 368 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 369 0 0 0 0 0 1 1 0 0 0 0 0 0 0
## 374 0 0 0 1 0 1 0 0 0 0 0 0 0 0
## 379 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 391 0 0 0 0 0 1 0 0 1 0 0 0 0 0
## 403 0 1 0 3 0 4 0 0 0 0 0 0 0 0
## 404 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 411 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 426 0 0 0 0 1 0 0 0 0 1 0 0 0 0
## 432 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 438 0 0 0 0 0 0 0 2 0 0 0 0 0 0
## 443 0 0 0 0 0 0 0 1 0 0 0 0 1 0
## 449 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 460 0 1 0 0 0 2 1 1 0 0 0 0 0 0
## 461 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 483 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 490 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 509 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 515 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 518 0 0 1 2 0 0 0 0 0 0 0 0 0 0
## 576 0 1 1 0 0 3 0 0 1 0 0 1 0 0
## 577 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 599 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 610 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 611 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 633 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 645 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 656 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 683 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 691 0 0 0 1 0 0 1 0 0 0 0 1 0 1
## 724 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 749 0 0 0 0 0 1 0 1 0 0 0 0 0 0
## 760 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 773 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 800 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 805 0 0 0 0 0 0 1 0 0 0 0 0 0 0
## 806 0 0 0 1 0 1 0 0 0 0 0 0 0 0
## 822 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 823 0 0 0 0 0 0 0 0 0 0 0 0 0 1
## 863 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## 864 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 876 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 921 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 979 0 0 0 1 0 0 0 0 0 0 0 1 0 0
## 980 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 1035 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 1036 0 0 0 0 0 1 0 1 0 0 0 0 0 0
## 1152 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## 1261 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 1382 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 1498 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 1612 0 1 0 0 0 0 0 0 0 0 0 0 0 0
## 1727 0 0 0 0 0 0 0 0 0 0 1 0 0 0
## 2056 0 0 0 0 0 0 0 0 0 1 0 0 0 0
## 2073 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## 2303 0 0 0 0 0 1 0 0 0 0 0 0 0 0
## 3283 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## 4607 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## 9502 0 0 0 0 0 0 0 1 0 0 0 0 0 0
mytable1<- xtabs(~price+minstay, data=hotel.df)
mytable1
## minstay
## price 1 2 3 4 5 6 7 8 9 10 12 14 15
## 23 1 2 0 0 0 0 0 0 0 0 0 0 0
## 29 3 0 1 0 0 0 0 0 0 0 0 0 0
## 30 1 0 0 0 0 0 0 0 0 0 0 0 0
## 31 0 1 0 0 0 0 1 0 0 0 0 0 0
## 32 1 2 1 0 0 0 0 0 0 0 0 0 0
## 33 1 0 0 0 0 0 0 0 0 0 0 0 0
## 34 0 2 0 0 0 0 0 0 0 0 0 0 0
## 35 4 1 0 0 0 1 0 0 0 0 0 0 0
## 36 1 0 0 0 0 0 0 0 0 0 0 0 0
## 37 0 1 0 0 0 0 0 0 0 0 0 0 0
## 38 1 0 0 0 0 0 0 0 0 0 0 0 0
## 39 0 0 0 1 0 0 0 0 0 0 0 0 0
## 40 5 3 2 0 1 0 1 0 0 0 0 0 0
## 41 0 0 0 0 0 0 1 0 0 0 1 0 0
## 43 1 1 1 0 0 0 0 0 1 0 0 0 0
## 45 2 3 3 0 0 0 0 0 0 0 0 0 0
## 46 6 4 1 0 2 0 1 0 0 0 0 0 0
## 47 1 0 0 1 0 0 1 0 0 0 0 0 0
## 48 2 0 2 0 0 0 1 0 0 0 0 0 0
## 49 1 0 2 0 1 1 1 0 0 0 0 0 1
## 50 1 0 1 0 0 0 0 0 0 0 0 0 0
## 52 5 1 4 0 1 0 3 0 0 0 0 0 0
## 53 2 0 0 2 0 0 0 0 0 0 0 0 0
## 55 0 0 0 1 0 0 0 0 0 0 0 0 0
## 56 3 0 2 0 0 0 0 0 0 0 0 0 0
## 57 5 2 2 0 1 1 1 0 0 0 0 0 0
## 58 11 12 7 3 2 0 6 0 0 0 0 1 0
## 59 2 1 0 0 0 0 0 0 0 0 0 0 0
## 60 2 0 1 1 0 0 0 0 0 0 0 1 0
## 61 1 1 1 0 0 0 1 0 0 0 0 0 0
## 62 1 0 1 1 1 0 0 0 0 0 0 0 0
## 63 2 1 4 0 1 0 3 0 0 0 0 0 0
## 64 1 0 2 1 0 0 1 0 0 0 0 0 0
## 65 0 0 0 1 1 0 1 0 0 0 0 0 0
## 66 1 0 1 1 1 0 0 0 0 0 0 0 0
## 67 0 3 1 1 0 0 1 0 0 0 0 0 0
## 68 0 3 0 0 2 0 0 0 0 0 0 1 0
## 69 12 6 9 5 2 1 2 0 0 0 0 0 0
## 70 1 0 0 1 0 0 0 0 0 0 0 0 0
## 71 2 2 2 0 0 0 0 0 0 0 0 0 0
## 72 2 0 0 0 1 0 0 0 0 0 0 0 0
## 74 2 0 2 1 1 0 0 0 0 0 0 0 0
## 75 3 5 3 1 0 0 0 0 0 0 0 0 0
## 76 1 0 2 0 0 0 0 0 0 0 0 0 0
## 77 0 1 0 0 0 0 0 0 0 0 0 0 0
## 78 0 1 0 0 0 0 1 0 0 0 0 0 0
## 79 3 1 0 0 0 0 1 0 0 0 0 0 0
## 80 7 4 10 4 4 1 3 0 0 0 0 0 0
## 81 1 0 0 0 1 0 0 0 0 0 0 0 0
## 83 1 1 0 0 0 0 0 0 0 0 0 0 0
## 84 0 0 0 0 1 0 0 0 0 0 0 0 0
## 85 1 2 1 0 0 0 1 0 0 0 0 0 0
## 87 6 4 3 2 7 0 2 0 0 0 0 0 0
## 89 1 1 1 0 0 0 0 0 0 0 0 0 0
## 90 2 2 0 1 0 0 0 0 0 0 0 0 0
## 91 2 1 5 1 2 0 1 0 0 0 0 0 0
## 92 6 10 12 3 5 3 4 0 0 1 0 0 0
## 93 2 3 5 2 0 0 2 0 0 0 0 0 0
## 94 1 1 0 0 0 0 0 0 0 0 0 0 0
## 96 0 0 0 1 0 0 0 0 0 0 0 0 0
## 97 0 0 0 0 0 0 1 0 0 0 0 0 0
## 98 4 7 3 1 1 2 1 0 0 0 0 0 0
## 99 0 0 0 1 0 0 0 0 0 0 0 0 0
## 101 0 0 0 0 0 0 1 0 0 0 0 0 0
## 102 0 1 2 1 1 1 0 0 0 0 0 0 0
## 103 2 4 3 1 2 1 1 1 0 0 0 0 0
## 104 10 2 7 1 1 1 2 0 0 0 0 0 0
## 105 0 0 0 1 0 0 0 0 0 0 0 0 0
## 106 0 1 0 0 0 0 0 0 0 0 0 0 0
## 107 1 0 1 0 0 1 0 0 0 0 0 0 0
## 108 1 0 0 0 0 1 1 0 0 0 0 0 0
## 109 3 0 0 1 0 1 2 0 0 0 0 0 0
## 110 0 0 0 1 0 0 0 0 0 0 0 0 0
## 111 0 0 1 0 0 0 0 0 0 0 0 0 0
## 112 1 0 0 0 0 0 0 0 0 0 0 0 0
## 113 1 0 0 0 1 1 1 0 0 0 0 0 0
## 114 1 3 3 4 1 1 1 0 0 0 0 0 0
## 115 9 9 7 5 1 4 3 0 0 0 0 0 0
## 117 0 0 0 0 1 0 0 0 0 0 0 0 0
## 119 0 0 1 1 0 0 0 0 0 0 0 0 0
## 121 1 1 2 0 0 0 0 0 0 0 0 0 0
## 123 0 0 1 0 0 0 0 0 0 0 0 0 0
## 125 0 1 0 0 0 0 2 0 0 0 0 0 0
## 126 1 2 0 0 1 0 0 0 0 0 0 0 0
## 127 3 4 4 0 2 0 3 0 0 0 0 0 0
## 129 0 0 0 0 0 0 1 0 0 0 0 0 0
## 130 0 0 1 0 0 0 0 0 0 0 0 0 0
## 131 0 1 0 0 0 0 0 0 0 0 0 0 0
## 132 0 0 1 0 0 0 2 0 0 0 0 0 0
## 133 0 0 1 0 1 0 0 0 0 0 0 0 0
## 136 0 0 1 0 0 0 0 0 0 0 0 0 0
## 137 3 0 0 0 0 0 0 0 0 0 0 0 0
## 138 5 6 5 1 1 1 1 0 0 0 0 0 0
## 139 1 0 0 1 0 0 0 0 0 0 0 0 0
## 140 0 0 0 0 0 0 1 0 0 0 0 0 0
## 143 0 0 0 1 0 0 0 0 0 0 0 0 0
## 144 0 0 1 1 1 1 0 0 0 0 0 0 0
## 145 0 0 0 1 0 0 0 0 0 0 0 0 0
## 148 1 0 0 0 0 0 1 0 0 0 0 0 0
## 149 1 2 6 1 3 0 2 0 0 0 0 0 0
## 150 1 0 2 0 1 0 0 0 0 0 0 0 0
## 153 0 1 1 0 0 0 0 0 0 0 0 0 0
## 156 0 0 0 2 1 0 0 0 0 0 0 0 0
## 160 0 0 0 1 0 0 1 0 0 0 0 0 0
## 161 0 0 1 0 0 1 0 0 0 0 0 0 0
## 162 2 1 1 1 2 0 0 0 0 0 0 0 0
## 164 0 0 0 1 0 0 0 0 0 0 0 0 0
## 165 0 0 1 0 0 0 0 0 0 0 0 0 0
## 167 1 0 2 0 0 0 2 0 0 0 0 0 0
## 168 1 0 0 0 0 0 0 0 0 0 0 0 0
## 171 2 0 1 0 0 0 2 0 0 0 0 0 0
## 172 1 0 0 1 2 1 1 0 0 0 0 0 0
## 173 8 5 6 3 1 1 2 0 0 0 0 0 0
## 180 0 1 0 0 0 0 0 0 0 0 0 0 0
## 183 0 0 0 1 1 0 0 0 0 0 0 0 0
## 184 1 1 2 2 1 1 2 0 0 0 0 0 0
## 190 0 0 0 0 0 0 1 0 0 0 0 0 0
## 196 0 1 2 0 1 1 1 0 0 0 0 0 0
## 197 0 0 0 1 0 0 0 0 0 0 0 0 0
## 201 0 0 1 0 0 0 0 0 0 0 0 0 0
## 207 0 2 0 0 0 1 0 0 0 0 0 0 0
## 208 0 1 1 1 1 0 0 0 0 0 0 0 0
## 212 0 0 0 0 0 0 1 0 0 0 0 0 0
## 213 0 1 1 0 0 0 0 0 0 0 0 0 0
## 214 2 0 0 1 0 0 0 0 0 0 0 0 0
## 215 1 0 0 0 0 0 0 0 0 0 0 0 0
## 218 1 1 1 0 1 0 1 0 0 0 0 0 0
## 225 1 0 1 2 0 0 0 0 0 0 0 0 0
## 230 2 2 2 4 1 1 1 0 0 0 0 0 0
## 231 3 1 0 4 1 1 0 0 0 0 0 0 0
## 253 3 0 1 0 0 0 2 0 0 0 0 0 0
## 259 1 0 0 0 0 0 0 0 0 0 0 0 0
## 265 0 1 0 0 0 0 0 0 0 0 0 0 0
## 277 0 0 0 1 0 0 0 0 0 0 0 0 0
## 287 0 2 3 1 0 0 2 0 0 0 0 0 0
## 288 0 1 0 0 0 0 0 0 0 0 0 0 0
## 290 1 0 0 0 0 0 0 0 0 0 0 0 0
## 300 0 0 0 0 0 0 1 0 0 0 0 0 0
## 305 0 0 1 0 0 0 0 0 0 0 0 0 0
## 311 0 0 0 0 0 0 2 0 0 0 0 0 0
## 316 0 0 0 1 0 0 0 0 0 0 0 0 0
## 317 0 0 0 0 1 0 0 0 0 0 0 0 0
## 322 0 0 0 0 0 0 1 0 0 0 0 0 0
## 330 0 0 0 1 0 0 0 0 0 0 0 0 0
## 331 0 0 0 1 0 0 0 0 0 0 0 0 0
## 333 0 0 0 1 0 0 0 0 0 0 0 0 0
## 345 0 0 3 1 2 2 3 0 0 1 0 1 0
## 346 1 1 0 0 0 0 1 0 0 0 0 0 0
## 356 0 0 0 0 1 0 0 0 0 0 0 0 0
## 363 0 0 0 0 0 0 1 0 0 0 0 0 0
## 368 0 0 1 0 0 0 0 0 0 0 0 0 0
## 369 0 0 0 0 2 0 0 0 0 0 0 0 0
## 374 1 0 0 1 0 0 0 0 0 0 0 0 0
## 379 1 0 0 0 0 0 0 0 0 0 0 0 0
## 391 1 0 0 0 0 0 0 0 0 0 0 1 0
## 403 1 0 3 0 1 1 2 0 0 0 0 0 0
## 426 0 0 1 0 0 0 1 0 0 0 0 0 0
## 432 0 0 1 0 0 0 0 0 0 0 0 0 0
## 438 0 0 1 0 0 0 1 0 0 0 0 0 0
## 443 0 0 1 0 0 0 1 0 0 0 0 0 0
## 449 1 0 0 0 0 0 0 0 0 0 0 0 0
## 460 0 1 1 0 0 0 3 0 0 0 0 0 0
## 461 0 0 0 0 0 0 1 0 0 0 0 0 0
## 483 0 0 0 0 0 0 1 0 0 0 0 0 0
## 490 0 1 0 0 0 0 0 0 0 0 0 0 0
## 509 1 0 0 0 0 0 0 0 0 0 0 0 0
## 515 0 0 0 0 0 0 0 1 0 0 0 0 0
## 518 0 0 1 0 1 0 1 0 0 0 0 0 0
## 576 0 0 0 2 1 0 3 0 0 0 0 0 0
## 577 0 0 0 1 0 0 0 0 0 0 0 0 0
## 599 0 0 0 1 0 0 0 0 0 0 0 0 0
## 610 0 0 0 0 0 0 1 0 0 0 0 0 0
## 611 0 0 0 1 0 0 0 0 0 0 0 0 0
## 633 0 0 1 0 0 0 0 0 0 0 0 0 0
## 645 0 0 0 0 0 0 1 0 0 0 0 0 0
## 656 0 0 0 0 0 0 1 0 0 0 0 0 0
## 683 0 0 0 0 0 0 1 0 0 0 0 0 0
## 691 1 0 1 0 1 0 1 0 0 0 0 0 0
## 724 0 0 0 0 0 0 1 0 0 0 0 0 0
## 749 0 0 0 0 1 0 1 0 0 0 0 0 0
## 760 0 0 0 0 0 0 1 0 0 0 0 0 0
## 773 0 0 0 0 0 0 1 0 0 0 0 0 0
## 800 0 0 0 0 0 0 0 0 0 0 0 1 0
## 805 0 0 0 0 1 0 0 0 0 0 0 0 0
## 806 1 0 0 0 0 0 1 0 0 0 0 0 0
## 822 0 0 0 0 0 0 1 0 0 0 0 0 0
## 823 0 0 0 0 0 0 1 0 0 0 0 0 0
## 863 0 0 1 0 0 0 0 0 0 0 0 0 0
## 864 0 0 0 0 0 0 1 0 0 0 0 0 0
## 876 0 0 0 0 0 0 1 0 0 0 0 0 0
## 921 1 0 0 0 0 0 0 0 0 0 0 0 0
## 979 0 0 1 0 1 0 0 0 0 0 0 0 0
## 980 0 0 1 0 0 0 0 0 0 0 0 0 0
## 1035 0 0 0 0 0 0 1 0 0 0 0 0 0
## 1036 0 0 0 0 0 0 0 0 0 0 1 0 0
## 1152 0 0 0 1 0 0 0 0 0 0 0 0 0
## 1261 0 0 0 0 0 0 1 0 0 0 0 0 0
## 1382 1 0 0 0 0 0 0 0 0 0 0 0 0
## 1498 0 0 0 0 0 0 1 0 0 0 0 0 0
## 1612 1 0 0 0 0 0 0 0 0 0 0 0 0
## 1727 0 0 0 0 0 0 1 0 0 0 0 0 0
## 2056 0 0 0 0 0 0 1 0 0 0 0 0 0
## 2073 0 0 0 0 0 0 0 0 0 0 0 1 0
## 2303 0 0 0 0 0 0 1 0 0 0 0 0 0
## 3283 1 0 0 0 0 0 0 0 0 0 0 0 0
## 4607 1 0 0 0 0 0 0 0 0 0 0 0 0
## 9502 1 0 0 0 0 0 0 0 0 0 0 0 0
mytable1<-xtabs(~price+overall_satisfaction, data=hotel.df)
mytable1
## overall_satisfaction
## price 2 3 3.5 4 4.5 5
## 23 0 0 1 0 1 1
## 29 0 0 0 2 0 0
## 30 0 0 0 1 0 0
## 31 0 0 0 0 2 0
## 32 0 0 0 2 1 0
## 33 0 0 0 0 1 0
## 34 0 0 0 0 1 0
## 35 0 0 0 0 4 0
## 36 0 0 0 0 0 1
## 37 0 0 1 0 0 0
## 38 0 0 0 0 1 1
## 40 0 0 0 3 4 1
## 41 0 0 0 0 1 0
## 43 0 0 0 1 1 0
## 45 0 0 0 0 1 2
## 46 0 0 1 0 8 2
## 47 0 0 0 0 2 0
## 48 0 0 0 1 3 0
## 49 0 0 1 1 2 0
## 50 0 0 0 1 0 1
## 52 0 0 0 1 4 2
## 53 0 0 0 1 1 0
## 55 0 0 0 0 1 0
## 56 0 0 0 1 1 0
## 57 0 0 0 0 5 3
## 58 0 0 1 1 13 11
## 59 0 0 0 0 1 0
## 60 0 0 0 0 1 1
## 61 0 0 0 1 1 0
## 62 0 0 0 1 2 0
## 63 0 0 1 2 4 2
## 64 0 0 0 0 1 1
## 65 0 0 0 1 1 0
## 66 0 0 0 1 3 0
## 67 0 0 0 0 1 2
## 68 0 0 0 1 3 3
## 69 0 0 0 4 10 5
## 70 0 0 0 0 1 0
## 71 0 0 0 1 1 1
## 72 0 0 0 0 1 0
## 74 0 0 0 1 0 2
## 75 0 0 0 0 6 4
## 79 0 0 0 0 1 1
## 80 0 0 0 0 7 9
## 83 0 0 0 0 2 0
## 84 0 0 0 0 1 0
## 85 0 0 0 0 2 1
## 87 0 0 1 0 1 8
## 89 0 0 0 0 0 1
## 90 1 1 0 0 0 0
## 91 0 0 0 0 5 2
## 92 0 0 0 2 13 8
## 93 0 0 1 1 4 4
## 94 0 0 0 0 1 0
## 98 0 0 0 1 8 4
## 101 0 0 0 0 1 0
## 102 0 0 0 1 4 0
## 103 0 0 0 0 0 7
## 104 0 0 1 1 5 4
## 106 0 0 0 0 1 1
## 107 0 0 1 0 1 0
## 109 0 0 0 0 1 1
## 110 0 0 0 0 1 0
## 113 0 0 1 0 0 1
## 114 0 0 0 0 5 1
## 115 0 0 0 0 9 5
## 117 0 0 0 0 0 1
## 119 0 0 0 0 1 0
## 121 0 0 0 0 0 1
## 123 0 0 0 0 0 1
## 127 0 0 0 2 2 3
## 130 0 0 0 0 1 0
## 132 0 0 0 0 0 1
## 133 0 0 0 2 0 0
## 138 0 0 0 1 5 4
## 139 0 0 0 0 2 0
## 145 0 0 0 0 0 1
## 149 0 0 0 1 3 4
## 150 0 0 1 0 0 0
## 153 0 0 0 1 0 1
## 156 0 0 0 0 1 0
## 161 0 0 0 0 0 1
## 162 0 0 0 1 4 2
## 167 0 0 0 0 1 0
## 173 0 0 0 3 2 3
## 184 0 0 0 0 0 2
## 185 0 0 0 0 1 0
## 190 0 0 1 0 0 0
## 196 0 0 0 0 2 1
## 207 0 0 0 0 0 1
## 208 0 0 0 0 0 1
## 218 0 0 0 0 1 0
## 225 0 0 0 0 1 1
## 230 0 0 0 1 2 0
## 231 0 0 0 0 1 1
## 253 0 0 0 0 1 1
## 265 0 0 0 0 0 1
## 277 0 0 0 0 0 1
## 287 0 0 1 0 0 2
## 288 0 0 0 0 0 1
## 300 0 0 0 1 0 0
## 305 0 0 0 0 1 0
## 330 0 0 0 0 0 1
## 345 0 0 0 0 2 0
## 346 0 0 0 0 0 2
## 369 0 0 0 0 1 0
## 403 0 0 0 1 0 2
## 404 0 0 0 0 1 0
## 432 0 0 0 0 0 1
## 443 0 0 0 0 0 1
## 518 0 0 0 0 0 1
## 576 0 0 0 0 0 2
## 599 0 0 0 0 0 1
## 749 0 0 0 0 0 1
## 863 0 0 0 0 0 1
## 980 0 0 0 0 1 0
boxplot(hotel.df$price, xlab="price", ylab="", main="PRICE OF ROOMS", horizontal=TRUE)
boxplot(hotel.df$price~ hotel.df$bedrooms, xlab="price", ylab="No. of bedrooms", main="PRICE OF ROOMS", horizontal=TRUE, col=c("red", "blue", "green"))
boxplot(hotel.df$price~ hotel.df$reviews, xlab="price", ylab="Reviews", main="PRICE OF ROOMS", horizontal=TRUE, col=c("red", "blue", "green"))
boxplot(hotel.df$price~ hotel.df$overall_satisfaction, xlab="price", ylab="Overall Satisfaction", main="PRICE OF ROOMS", horizontal=TRUE, col=c("red", "blue", "green"))
boxplot(hotel.df$price~ hotel.df$accommodates, xlab="price", ylab="Accomodations", main="PRICE OF ROOMS", horizontal=TRUE, col=c("red", "blue", "green"))
hist(hotel.df$price, main="PRICE FREQUENCY",xlab = "price of rooms",breaks = 25, xlim= c(0,3000), col="green")
plot(x= hotel.df$price, y=hotel.df$bedrooms, col="blue", main="bedrooms v/s price", xlab = "price", ylab = "number of bedrooms")
plot(x= hotel.df$price, y=hotel.df$overall_satisfaction, col="blue", main="overall satisfaction v/s price", xlab = "price", ylab = "Overall Satisfaction")
plot(x= hotel.df$price, y=hotel.df$minstay, col="blue", main="minstay v/s price", xlab = "price", ylab = "Minstay")
new_data<- hotel.df[,6:11]
r=cor(new_data)
r
## reviews overall_satisfaction accommodates
## reviews 1.00000000 NA -0.1539512
## overall_satisfaction NA 1 NA
## accommodates -0.15395117 NA 1.0000000
## bedrooms NA NA NA
## price -0.09723858 NA 0.3146828
## minstay NA NA NA
## bedrooms price minstay
## reviews NA -0.09723858 NA
## overall_satisfaction NA NA NA
## accommodates NA 0.31468282 NA
## bedrooms 1 NA NA
## price NA 1.00000000 NA
## minstay NA NA 1
library(corrgram)
corrgram(hotel.df, order = T, text.panel=panel.txt,
lower.panel = panel.shade,
upper.panel = panel.pie, main="Corrgram of all variables")
library(car)
scatterplotMatrix(formula=~host_id+reviews+overall_satisfaction+price,cex=0.6,data = hotel.df,diagonal="histogram")
Null Hypothesis - There is no correlation between the price and minstay
cor.test(hotel.df$price,hotel.df$minstay)
##
## Pearson's product-moment correlation
##
## data: hotel.df$price and hotel.df$minstay
## t = 3.1192, df = 933, p-value = 0.001869
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.03772307 0.16463048
## sample estimates:
## cor
## 0.1015901
Since p<0.05 hence we reject the null hypothesis.
t.test(hotel.df$price,hotel.df$minstay)
##
## Welch Two Sample t-test
##
## data: hotel.df$price and hotel.df$minstay
## t = 14.133, df = 998.07, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 155.0829 205.0945
## sample estimates:
## mean of x mean of y
## 183.547548 3.458824