1- Read dataset in R and visualize length and breadth of dataset

setwd("C:/Users/SURABHI/Desktop/IIM INTERNSHIP")
hotel.df <- read.csv (paste("Airnb dataset.csv", sep=""))
View(hotel.df)
dim(hotel.df)
## [1] 999  13

2- Create descriptive statistics of each variable

minimum of variable

min(hotel.df$reviews) 
## [1] 0
min(hotel.df$overall_satisfaction)
## [1] NA
min(hotel.df$accommodates)
## [1] 1
min(hotel.df$bedrooms)
## [1] NA
min(hotel.df$price)
## [1] 23
min(hotel.df$minstay)
## [1] NA

maximum of variable

max(hotel.df$reviews)
## [1] 199
max(hotel.df$overall_satisfaction)
## [1] NA
max(hotel.df$accommodates)
## [1] 16
max(hotel.df$bedrooms)
## [1] NA
max(hotel.df$price)
## [1] 9502
max(hotel.df$minstay)
## [1] NA

median of variable

median(hotel.df$reviews)
## [1] 2
median(hotel.df$overall_satisfaction)
## [1] NA
median(hotel.df$accommodates)
## [1] 4
median(hotel.df$bedrooms)
## [1] NA
median(hotel.df$price)
## [1] 103
median(hotel.df$minstay)
## [1] NA

standard deviation of variable

sd(hotel.df$reviews)
## [1] 14.17979
sd(hotel.df$overall_satisfaction)
## [1] NA
sd(hotel.df$accommodates)
## [1] 2.120395
sd(hotel.df$bedrooms)
## [1] NA
sd(hotel.df$price)
## [1] 402.755
sd(hotel.df$minstay)
## [1] NA

3- Create one way contingency table for categorical variables in dataset

mytable<- with(hotel.df, table(hotel.df$reviews))
mytable
## 
##   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17 
## 315 171  89  69  49  38  25  25  20  17  23  10  10  14  12   4   8   8 
##  18  19  20  21  23  24  25  26  27  28  29  30  31  32  34  36  38  39 
##   6   7   8   1   4   2   1   4   2   3   2   3   2   3   2   1   4   3 
##  40  41  42  43  45  48  50  51  52  54  57  60  63  67  74  76  78  80 
##   1   2   2   4   1   1   2   2   1   2   1   2   2   1   1   1   1   1 
##  82  88  95  97 140 199 
##   1   1   1   1   1   1
mytable<- with(hotel.df, table(hotel.df$bedrooms))
mytable
## 
##   0   1   2   3   4   5   6   7   8 
## 158 454 227  91  36  20   6   3   1
mytable<- with(hotel.df, table(hotel.df$accommodates))
mytable
## 
##   1   2   3   4   5   6   7   8   9  10  11  12  14  16 
##  10 258  93 342  61 145  14  39   6  16   3   7   3   2
mytable<- with(hotel.df, table(hotel.df$minstay))
mytable
## 
##   1   2   3   4   5   6   7   8   9  10  12  14  15 
## 220 158 195  99  83  35 130   2   1   2   2   7   1
mytable<- with(hotel.df, table(hotel.df$overall_satisfaction))
mytable
## 
##   2   3 3.5   4 4.5   5 
##   1   1  14  49 205 153

4- Create two way contingency table for categorical variables in the dataset

mytable1<- xtabs(~price+bedrooms, data=hotel.df)
mytable1
##       bedrooms
## price   0  1  2  3  4  5  6  7  8
##   23    0  4  0  0  0  0  0  0  0
##   29    0  4  0  0  0  0  0  0  0
##   30    0  1  0  0  0  0  0  0  0
##   31    1  1  0  0  0  0  0  0  0
##   32    0  4  0  0  0  0  0  0  0
##   33    0  1  0  0  0  0  0  0  0
##   34    1  1  0  0  0  0  0  0  0
##   35    1  5  0  0  0  0  0  0  0
##   36    0  1  0  0  0  0  0  0  0
##   37    1  1  0  0  0  0  0  0  0
##   38    1  0  1  0  0  0  0  0  0
##   39    1  0  0  0  0  0  0  0  0
##   40    6  6  0  0  0  0  0  0  0
##   41    2  0  0  0  0  0  0  0  0
##   43    0  4  0  0  0  0  0  0  0
##   45    0  7  1  0  0  0  0  0  0
##   46    6  9  0  0  0  0  0  0  0
##   47    1  2  0  0  0  0  0  0  0
##   48    1  4  0  0  0  0  0  0  0
##   49    2  5  0  0  0  0  0  0  0
##   50    0  2  0  0  0  0  0  0  0
##   52    4 11  0  0  0  0  0  0  0
##   53    1  1  2  0  0  0  0  0  0
##   55    1  0  0  0  0  0  0  0  0
##   56    1  4  1  0  0  0  0  0  0
##   57    5  7  0  0  0  0  0  0  0
##   58   15 28  3  0  0  0  0  0  0
##   59    2  1  0  0  0  0  0  0  0
##   60    3  3  0  0  0  0  0  0  0
##   61    1  3  0  0  0  0  0  0  0
##   62    2  2  0  0  0  0  0  0  0
##   63    3  7  1  0  0  0  0  0  0
##   64    2  2  1  0  0  0  0  0  0
##   65    1  1  1  0  0  0  0  0  0
##   66    1  3  0  0  0  0  0  0  0
##   67    0  6  0  0  0  0  0  0  0
##   68    2  5  0  0  0  0  0  0  0
##   69   10 23  4  0  0  0  0  0  0
##   70    0  2  0  0  0  0  0  0  0
##   71    2  4  0  0  0  0  0  0  0
##   72    1  2  0  0  0  0  0  0  0
##   74    3  4  0  0  0  0  0  0  0
##   75    4  9  0  0  0  0  0  0  0
##   76    1  1  1  0  0  0  0  0  0
##   77    0  1  0  0  0  0  0  0  0
##   78    0  1  1  0  0  0  0  0  0
##   79    2  4  0  0  0  0  0  0  0
##   80   10 20  7  0  0  0  0  0  0
##   81    1  1  0  0  0  0  0  0  0
##   82    0  1  0  0  0  0  0  0  0
##   83    1  1  1  0  0  0  0  0  0
##   84    0  1  0  0  0  0  0  0  0
##   85    0  5  0  0  0  0  0  0  0
##   87    0 19  4  1  0  0  0  0  0
##   89    1  2  1  0  0  0  0  0  0
##   90    2  3  0  0  0  0  0  0  0
##   91    2  9  1  0  0  0  0  0  0
##   92    8 26 10  0  0  0  0  0  0
##   93    2  6  5  2  0  0  0  0  0
##   94    1  1  0  0  0  0  0  0  0
##   96    1  0  0  0  0  0  0  0  0
##   97    0  1  0  0  0  0  0  0  0
##   98    4  9  6  0  0  0  0  0  0
##   99    0  0  1  0  0  0  0  0  0
##   101   1  1  0  0  0  0  0  0  0
##   102   1  1  4  0  0  0  0  0  0
##   103   2 11  2  0  0  0  0  0  0
##   104   7 15  5  0  0  1  0  0  0
##   105   0  0  1  0  0  0  0  0  0
##   106   2  0  0  0  0  0  0  0  0
##   107   0  2  1  0  0  0  0  0  0
##   108   0  1  1  1  0  0  0  0  0
##   109   0  2  4  0  0  0  0  0  0
##   110   0  0  1  0  0  0  0  0  0
##   111   0  1  0  0  0  0  0  0  0
##   112   1  0  0  0  0  0  0  0  0
##   113   0  2  3  0  0  0  0  0  0
##   114   1  8  4  1  0  0  0  0  0
##   115   4 16 15  4  0  0  0  0  0
##   117   0  1  0  0  0  0  0  0  0
##   119   0  0  2  0  0  0  0  0  0
##   121   0  2  1  1  0  0  0  0  0
##   123   0  1  0  0  0  0  0  0  0
##   125   0  2  1  0  0  0  0  0  0
##   126   0  3  2  0  0  0  0  0  0
##   127   2 10  6  1  0  0  0  0  0
##   129   0  0  1  0  0  0  0  0  0
##   130   0  1  0  0  0  0  0  0  0
##   131   0  1  0  0  0  0  0  0  0
##   132   0  2  1  0  0  0  0  0  0
##   133   0  1  0  1  0  0  0  0  0
##   136   0  0  2  0  0  0  0  0  0
##   137   0  2  1  1  0  0  0  0  0
##   138   1  9  9  3  0  0  0  0  0
##   139   0  1  1  1  0  0  0  0  0
##   140   0  0  1  0  0  0  0  0  0
##   143   0  1  0  0  0  0  0  0  0
##   144   1  1  2  1  0  0  0  0  0
##   145   0  2  0  0  0  0  0  0  0
##   148   0  1  1  0  0  0  0  0  0
##   149   0  3 10  3  0  0  0  0  0
##   150   0  1  2  1  0  0  0  0  0
##   153   0  0  1  1  0  0  0  0  0
##   156   0  1  2  1  0  0  0  0  0
##   160   1  1  0  0  1  0  0  0  0
##   161   0  0  2  0  0  0  0  0  0
##   162   0  3  3  1  0  0  0  0  0
##   164   0  0  1  0  0  0  0  0  0
##   165   0  0  0  1  0  0  0  0  0
##   167   0  2  2  1  0  0  0  0  0
##   168   0  0  0  1  0  0  0  0  0
##   171   0  1  3  1  0  0  0  0  0
##   172   0  3  4  0  0  0  0  0  0
##   173   2  8 12  5  1  0  0  0  0
##   180   1  0  0  0  0  0  0  0  0
##   183   0  1  0  1  0  0  0  0  0
##   184   0  1  7  2  0  0  0  0  0
##   185   0  0  1  0  0  0  0  0  0
##   190   0  0  0  1  0  0  0  0  0
##   196   0  1  3  2  0  0  0  0  0
##   197   0  0  0  1  0  0  0  0  0
##   201   0  1  0  1  0  0  0  0  0
##   207   0  0  1  2  1  0  0  0  0
##   208   0  1  2  1  0  0  0  0  0
##   212   0  0  1  0  0  0  0  0  0
##   213   0  1  1  0  0  0  0  0  0
##   214   0  0  2  1  0  0  0  0  0
##   215   0  0  1  0  0  0  0  0  0
##   218   0  1  1  2  0  1  0  0  0
##   225   0  1  2  1  0  0  0  0  0
##   230   0  3  6  4  2  0  0  0  0
##   231   3  2  3  2  1  0  0  0  0
##   247   0  0  0  1  0  0  0  0  0
##   253   0  2  4  0  0  0  0  0  0
##   259   0  0  0  1  0  0  0  0  0
##   265   0  0  0  1  0  0  0  0  0
##   277   0  0  1  0  0  0  0  0  0
##   278   0  0  1  0  0  0  0  0  0
##   287   0  3  1  3  1  1  0  0  0
##   288   0  0  0  1  0  1  0  0  0
##   290   0  0  0  0  1  0  0  0  0
##   300   0  0  0  1  0  0  0  0  0
##   305   0  0  0  0  1  0  0  0  0
##   311   0  0  0  2  0  0  0  0  0
##   316   0  0  1  0  0  0  0  0  0
##   317   0  0  1  0  0  0  0  0  0
##   322   0  0  0  0  1  0  0  0  0
##   330   0  0  0  0  1  0  0  0  0
##   331   0  0  1  0  0  0  0  0  0
##   333   0  0  0  0  1  0  0  0  0
##   345   0  1  2  3  3  4  0  0  0
##   346   0  1  0  1  0  1  0  0  0
##   356   0  0  1  0  0  0  0  0  0
##   363   0  0  0  1  0  0  0  0  0
##   368   0  0  0  0  1  0  0  0  0
##   369   0  0  0  0  2  0  0  0  0
##   374   0  2  0  0  0  0  0  0  0
##   379   0  1  0  0  0  0  0  0  0
##   391   0  0  0  1  0  1  0  0  0
##   403   1  1  2  4  0  0  0  0  0
##   404   0  0  0  0  0  1  0  0  0
##   411   0  0  0  0  1  0  0  0  0
##   426   0  0  1  0  0  1  0  0  0
##   432   0  0  0  1  0  0  0  0  0
##   438   0  0  0  1  1  0  0  0  0
##   443   0  0  0  0  1  1  0  0  0
##   449   0  1  0  0  0  0  0  0  0
##   460   0  1  0  3  1  0  0  0  0
##   461   0  0  0  0  1  0  0  0  0
##   483   0  0  0  1  0  0  0  0  0
##   490   0  0  1  0  0  0  0  0  0
##   509   0  0  1  0  0  0  0  0  0
##   515   0  0  1  0  0  0  0  0  0
##   518   1  0  2  0  0  0  0  0  0
##   576   2  0  0  2  2  0  1  0  0
##   577   0  0  1  0  0  0  0  0  0
##   599   0  0  0  0  0  1  0  0  0
##   610   0  0  0  1  0  0  0  0  0
##   611   0  1  0  0  0  0  0  0  0
##   633   0  0  0  1  0  0  0  0  0
##   645   0  0  0  0  1  0  0  0  0
##   656   0  0  0  0  0  1  0  0  0
##   683   0  0  0  0  1  0  0  0  0
##   691   0  0  1  0  1  0  1  1  0
##   724   0  0  0  0  0  0  1  0  0
##   749   0  0  0  1  1  0  0  0  0
##   760   0  0  0  1  0  0  0  0  0
##   773   0  0  1  0  0  0  0  0  0
##   800   0  0  0  0  0  1  0  0  0
##   805   0  0  0  1  0  0  0  0  0
##   806   0  0  1  1  0  0  0  0  0
##   822   0  0  0  0  0  0  1  0  0
##   823   0  0  0  0  0  0  0  0  1
##   863   0  0  0  0  0  0  0  1  0
##   864   0  0  0  0  1  0  0  0  0
##   876   0  0  0  0  1  0  0  0  0
##   921   0  0  0  0  1  0  0  0  0
##   979   0  0  1  0  0  0  0  1  0
##   980   0  0  1  0  0  0  0  0  0
##   1035  0  0  0  0  0  0  1  0  0
##   1036  0  0  0  1  1  0  0  0  0
##   1152  0  0  0  0  0  0  1  0  0
##   1261  0  0  0  0  0  1  0  0  0
##   1382  0  0  1  0  0  0  0  0  0
##   1498  0  0  0  0  0  1  0  0  0
##   1612  0  1  0  0  0  0  0  0  0
##   1727  0  0  0  0  0  1  0  0  0
##   2056  0  0  0  0  0  1  0  0  0
##   2073  0  0  0  0  1  0  0  0  0
##   2303  0  0  0  0  1  0  0  0  0
##   3283  0  0  0  1  0  0  0  0  0
##   4607  0  0  1  0  0  0  0  0  0
##   9502  0  0  0  0  1  0  0  0  0
mytable1<- xtabs(~price+accommodates, data=hotel.df)
mytable1
##       accommodates
## price   1  2  3  4  5  6  7  8  9 10 11 12 14 16
##   23    3  0  0  1  0  0  0  0  0  0  0  0  0  0
##   29    0  4  0  0  0  0  0  0  0  0  0  0  0  0
##   30    0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   31    0  2  0  0  0  0  0  0  0  0  0  0  0  0
##   32    0  2  1  1  0  0  0  0  0  0  0  0  0  0
##   33    0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   34    0  2  0  0  0  0  0  0  0  0  0  0  0  0
##   35    2  3  1  0  0  0  0  0  0  0  0  0  0  0
##   36    0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   37    0  2  0  0  0  0  0  0  0  0  0  0  0  0
##   38    0  1  0  0  0  1  0  0  0  0  0  0  0  0
##   39    0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   40    1  8  1  2  0  0  0  0  0  0  0  0  0  0
##   41    0  1  0  1  0  0  0  0  0  0  0  0  0  0
##   43    1  2  1  0  0  0  0  0  0  0  0  0  0  0
##   45    0  5  1  2  0  0  0  0  0  0  0  0  0  0
##   46    0 13  2  0  0  0  0  0  0  0  0  0  0  0
##   47    0  0  1  2  0  0  0  0  0  0  0  0  0  0
##   48    0  2  1  1  1  0  0  0  0  0  0  0  0  0
##   49    0  5  1  1  0  0  0  0  0  0  0  0  0  0
##   50    1  1  0  0  0  0  0  0  0  0  0  0  0  0
##   52    0  9  1  5  0  0  0  0  0  0  0  0  0  0
##   53    0  2  0  2  0  0  0  0  0  0  0  0  0  0
##   55    0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   56    0  3  1  1  0  1  0  0  0  0  0  0  0  0
##   57    0  6  1  4  1  0  0  0  0  0  0  0  0  0
##   58    0 25  6 13  1  1  0  0  0  0  0  0  0  0
##   59    0  1  2  0  0  0  0  0  0  0  0  0  0  0
##   60    0  4  0  2  0  0  0  0  0  0  0  0  0  0
##   61    0  1  1  1  1  0  0  0  0  0  0  0  0  0
##   62    0  2  0  2  0  0  0  0  0  0  0  0  0  0
##   63    0  6  1  4  1  0  0  0  0  0  0  0  0  0
##   64    0  1  0  4  0  0  0  0  0  0  0  0  0  0
##   65    0  2  1  0  0  0  0  0  0  0  0  0  0  0
##   66    0  3  1  0  0  0  0  0  0  0  0  0  0  0
##   67    0  4  0  1  1  0  0  0  0  0  0  0  0  0
##   68    0  2  2  3  0  0  0  0  0  0  0  0  0  0
##   69    0 13  5 17  2  1  0  0  0  0  0  0  0  0
##   70    0  0  1  1  0  0  0  0  0  0  0  0  0  0
##   71    0  4  0  1  0  1  0  0  0  0  0  0  0  0
##   72    0  1  0  2  0  0  0  0  0  0  0  0  0  0
##   74    0  4  0  3  0  0  0  0  0  0  0  0  0  0
##   75    0  4  1  7  0  1  0  0  0  0  0  0  0  0
##   76    0  1  1  1  0  0  0  0  0  0  0  0  0  0
##   77    0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   78    0  0  1  0  0  1  0  0  0  0  0  0  0  0
##   79    0  3  0  3  0  0  0  0  0  0  0  0  0  0
##   80    0  9  5 16  3  4  0  0  0  0  0  0  0  0
##   81    0  1  0  1  0  0  0  0  0  0  0  0  0  0
##   82    0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   83    0  0  1  2  0  0  0  0  0  0  0  0  0  0
##   84    0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   85    0  1  0  4  0  0  0  0  0  0  0  0  0  0
##   87    0  4  3 11  3  2  0  0  1  0  0  0  0  0
##   89    0  1  0  2  1  0  0  0  0  0  0  0  0  0
##   90    0  1  1  2  0  1  0  0  0  0  0  0  0  0
##   91    0  4  2  5  1  0  0  0  0  0  0  0  0  0
##   92    1 11  4 22  2  4  0  0  0  0  0  0  0  0
##   93    0  1  1  5  3  5  0  0  0  0  0  0  0  0
##   94    0  1  0  0  1  0  0  0  0  0  0  0  0  0
##   96    0  0  1  0  0  0  0  0  0  0  0  0  0  0
##   97    0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   98    1  5  1  9  2  1  0  0  0  0  0  0  0  0
##   99    0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   101   0  0  1  1  0  0  0  0  0  0  0  0  0  0
##   102   0  0  1  2  1  2  0  0  0  0  0  0  0  0
##   103   0  5  4  5  1  0  0  0  0  0  0  0  0  0
##   104   0  5  4 16  0  2  0  0  0  0  1  0  0  0
##   105   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   106   0  1  0  1  0  0  0  0  0  0  0  0  0  0
##   107   0  0  0  2  0  0  1  0  0  0  0  0  0  0
##   108   0  0  1  1  0  1  0  0  0  0  0  0  0  0
##   109   0  2  0  2  0  2  1  0  0  0  0  0  0  0
##   110   0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   111   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   112   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   113   0  1  0  1  2  1  0  0  0  0  0  0  0  0
##   114   0  3  1  9  1  0  0  0  0  0  0  0  0  0
##   115   0  6  4 14  4 11  0  0  0  0  0  0  0  0
##   117   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   119   0  0  0  0  0  2  0  0  0  0  0  0  0  0
##   121   0  1  0  1  0  2  0  0  0  0  0  0  0  0
##   123   0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   125   0  0  0  2  0  1  0  0  0  0  0  0  0  0
##   126   0  2  0  1  0  2  0  0  0  0  0  0  0  0
##   127   0  5  2  8  1  3  0  0  0  0  0  0  0  0
##   129   0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   130   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   131   0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   132   0  1  0  2  0  0  0  0  0  0  0  0  0  0
##   133   0  0  0  0  0  1  1  0  0  0  0  0  0  0
##   136   0  0  0  2  0  0  0  0  0  0  0  0  0  0
##   137   0  0  1  2  1  0  0  0  0  0  0  0  0  0
##   138   0  4  2  8  2  3  1  1  0  1  0  0  0  0
##   139   0  0  0  1  0  1  0  1  0  0  0  0  0  0
##   140   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   143   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   144   0  0  1  2  0  1  1  0  0  0  0  0  0  0
##   145   0  0  0  2  0  0  0  0  0  0  0  0  0  0
##   148   0  1  0  1  0  0  0  0  0  0  0  0  0  0
##   149   0  1  1  7  2  4  0  0  0  1  0  0  0  0
##   150   0  1  0  0  1  2  0  0  0  0  0  0  0  0
##   153   0  0  0  1  1  0  0  0  0  0  0  0  0  0
##   156   0  0  1  1  0  2  0  0  0  0  0  0  0  0
##   160   0  0  1  1  0  0  0  1  0  0  0  0  0  0
##   161   0  0  0  2  0  0  0  0  0  0  0  0  0  0
##   162   0  1  1  4  0  0  0  1  0  0  0  0  0  0
##   164   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   165   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   167   0  0  0  3  0  0  0  1  1  0  0  0  0  0
##   168   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   171   0  0  0  3  1  1  0  0  0  0  0  0  0  0
##   172   0  2  1  1  2  1  0  0  0  0  0  0  0  0
##   173   0  2  4 10  3  8  0  0  1  0  0  0  0  0
##   180   0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   183   0  0  0  1  0  1  0  0  0  0  0  0  0  0
##   184   0  1  0  3  1  3  1  1  0  0  0  0  0  0
##   185   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   190   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   196   0  0  1  1  0  4  0  0  0  0  0  0  0  0
##   197   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   201   0  0  0  0  0  2  0  0  0  0  0  0  0  0
##   207   0  0  0  1  0  2  1  0  0  0  0  0  0  0
##   208   0  0  0  3  0  1  0  0  0  0  0  0  0  0
##   212   0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   213   0  0  0  2  0  0  0  0  0  0  0  0  0  0
##   214   0  0  0  2  0  1  0  0  0  0  0  0  0  0
##   215   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   218   0  0  0  1  0  1  0  2  0  1  0  0  0  0
##   225   0  0  0  1  0  3  0  0  0  0  0  0  0  0
##   230   0  1  1  5  0  6  0  2  0  0  0  0  0  0
##   231   0  2  0  3  3  1  1  0  0  1  0  0  0  0
##   247   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   253   0  0  1  5  0  0  0  0  0  0  0  0  0  0
##   259   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   265   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   277   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   278   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   287   0  2  0  2  0  2  0  1  0  2  0  0  0  0
##   288   0  0  0  0  0  0  0  1  0  0  0  1  0  0
##   290   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   300   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   305   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   311   0  0  0  0  0  0  0  2  0  0  0  0  0  0
##   316   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   317   0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   322   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   330   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   331   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   333   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   345   0  0  1  1  0  3  1  3  1  2  0  0  1  0
##   346   0  0  0  1  0  1  0  0  0  1  0  0  0  0
##   356   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   363   0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   368   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   369   0  0  0  0  0  1  1  0  0  0  0  0  0  0
##   374   0  0  0  1  0  1  0  0  0  0  0  0  0  0
##   379   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   391   0  0  0  0  0  1  0  0  1  0  0  0  0  0
##   403   0  1  0  3  0  4  0  0  0  0  0  0  0  0
##   404   0  0  0  0  0  0  0  0  0  1  0  0  0  0
##   411   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   426   0  0  0  0  1  0  0  0  0  1  0  0  0  0
##   432   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   438   0  0  0  0  0  0  0  2  0  0  0  0  0  0
##   443   0  0  0  0  0  0  0  1  0  0  0  0  1  0
##   449   0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   460   0  1  0  0  0  2  1  1  0  0  0  0  0  0
##   461   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   483   0  0  0  0  0  0  1  0  0  0  0  0  0  0
##   490   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   509   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   515   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   518   0  0  1  2  0  0  0  0  0  0  0  0  0  0
##   576   0  1  1  0  0  3  0  0  1  0  0  1  0  0
##   577   0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   599   0  0  0  0  0  0  0  0  0  1  0  0  0  0
##   610   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   611   0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   633   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   645   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   656   0  0  0  0  0  0  0  0  0  1  0  0  0  0
##   683   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   691   0  0  0  1  0  0  1  0  0  0  0  1  0  1
##   724   0  0  0  0  0  0  0  0  0  0  0  1  0  0
##   749   0  0  0  0  0  1  0  1  0  0  0  0  0  0
##   760   0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   773   0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   800   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   805   0  0  0  0  0  0  1  0  0  0  0  0  0  0
##   806   0  0  0  1  0  1  0  0  0  0  0  0  0  0
##   822   0  0  0  0  0  0  0  0  0  0  0  1  0  0
##   823   0  0  0  0  0  0  0  0  0  0  0  0  0  1
##   863   0  0  0  0  0  0  0  0  0  0  0  0  1  0
##   864   0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   876   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   921   0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   979   0  0  0  1  0  0  0  0  0  0  0  1  0  0
##   980   0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   1035  0  0  0  0  0  0  0  0  0  1  0  0  0  0
##   1036  0  0  0  0  0  1  0  1  0  0  0  0  0  0
##   1152  0  0  0  0  0  0  0  0  0  0  0  1  0  0
##   1261  0  0  0  0  0  0  0  0  0  0  1  0  0  0
##   1382  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   1498  0  0  0  0  0  0  0  0  0  1  0  0  0  0
##   1612  0  1  0  0  0  0  0  0  0  0  0  0  0  0
##   1727  0  0  0  0  0  0  0  0  0  0  1  0  0  0
##   2056  0  0  0  0  0  0  0  0  0  1  0  0  0  0
##   2073  0  0  0  0  0  0  0  1  0  0  0  0  0  0
##   2303  0  0  0  0  0  1  0  0  0  0  0  0  0  0
##   3283  0  0  0  1  0  0  0  0  0  0  0  0  0  0
##   4607  0  0  0  0  1  0  0  0  0  0  0  0  0  0
##   9502  0  0  0  0  0  0  0  1  0  0  0  0  0  0
mytable1<- xtabs(~price+minstay, data=hotel.df)
mytable1
##       minstay
## price   1  2  3  4  5  6  7  8  9 10 12 14 15
##   23    1  2  0  0  0  0  0  0  0  0  0  0  0
##   29    3  0  1  0  0  0  0  0  0  0  0  0  0
##   30    1  0  0  0  0  0  0  0  0  0  0  0  0
##   31    0  1  0  0  0  0  1  0  0  0  0  0  0
##   32    1  2  1  0  0  0  0  0  0  0  0  0  0
##   33    1  0  0  0  0  0  0  0  0  0  0  0  0
##   34    0  2  0  0  0  0  0  0  0  0  0  0  0
##   35    4  1  0  0  0  1  0  0  0  0  0  0  0
##   36    1  0  0  0  0  0  0  0  0  0  0  0  0
##   37    0  1  0  0  0  0  0  0  0  0  0  0  0
##   38    1  0  0  0  0  0  0  0  0  0  0  0  0
##   39    0  0  0  1  0  0  0  0  0  0  0  0  0
##   40    5  3  2  0  1  0  1  0  0  0  0  0  0
##   41    0  0  0  0  0  0  1  0  0  0  1  0  0
##   43    1  1  1  0  0  0  0  0  1  0  0  0  0
##   45    2  3  3  0  0  0  0  0  0  0  0  0  0
##   46    6  4  1  0  2  0  1  0  0  0  0  0  0
##   47    1  0  0  1  0  0  1  0  0  0  0  0  0
##   48    2  0  2  0  0  0  1  0  0  0  0  0  0
##   49    1  0  2  0  1  1  1  0  0  0  0  0  1
##   50    1  0  1  0  0  0  0  0  0  0  0  0  0
##   52    5  1  4  0  1  0  3  0  0  0  0  0  0
##   53    2  0  0  2  0  0  0  0  0  0  0  0  0
##   55    0  0  0  1  0  0  0  0  0  0  0  0  0
##   56    3  0  2  0  0  0  0  0  0  0  0  0  0
##   57    5  2  2  0  1  1  1  0  0  0  0  0  0
##   58   11 12  7  3  2  0  6  0  0  0  0  1  0
##   59    2  1  0  0  0  0  0  0  0  0  0  0  0
##   60    2  0  1  1  0  0  0  0  0  0  0  1  0
##   61    1  1  1  0  0  0  1  0  0  0  0  0  0
##   62    1  0  1  1  1  0  0  0  0  0  0  0  0
##   63    2  1  4  0  1  0  3  0  0  0  0  0  0
##   64    1  0  2  1  0  0  1  0  0  0  0  0  0
##   65    0  0  0  1  1  0  1  0  0  0  0  0  0
##   66    1  0  1  1  1  0  0  0  0  0  0  0  0
##   67    0  3  1  1  0  0  1  0  0  0  0  0  0
##   68    0  3  0  0  2  0  0  0  0  0  0  1  0
##   69   12  6  9  5  2  1  2  0  0  0  0  0  0
##   70    1  0  0  1  0  0  0  0  0  0  0  0  0
##   71    2  2  2  0  0  0  0  0  0  0  0  0  0
##   72    2  0  0  0  1  0  0  0  0  0  0  0  0
##   74    2  0  2  1  1  0  0  0  0  0  0  0  0
##   75    3  5  3  1  0  0  0  0  0  0  0  0  0
##   76    1  0  2  0  0  0  0  0  0  0  0  0  0
##   77    0  1  0  0  0  0  0  0  0  0  0  0  0
##   78    0  1  0  0  0  0  1  0  0  0  0  0  0
##   79    3  1  0  0  0  0  1  0  0  0  0  0  0
##   80    7  4 10  4  4  1  3  0  0  0  0  0  0
##   81    1  0  0  0  1  0  0  0  0  0  0  0  0
##   83    1  1  0  0  0  0  0  0  0  0  0  0  0
##   84    0  0  0  0  1  0  0  0  0  0  0  0  0
##   85    1  2  1  0  0  0  1  0  0  0  0  0  0
##   87    6  4  3  2  7  0  2  0  0  0  0  0  0
##   89    1  1  1  0  0  0  0  0  0  0  0  0  0
##   90    2  2  0  1  0  0  0  0  0  0  0  0  0
##   91    2  1  5  1  2  0  1  0  0  0  0  0  0
##   92    6 10 12  3  5  3  4  0  0  1  0  0  0
##   93    2  3  5  2  0  0  2  0  0  0  0  0  0
##   94    1  1  0  0  0  0  0  0  0  0  0  0  0
##   96    0  0  0  1  0  0  0  0  0  0  0  0  0
##   97    0  0  0  0  0  0  1  0  0  0  0  0  0
##   98    4  7  3  1  1  2  1  0  0  0  0  0  0
##   99    0  0  0  1  0  0  0  0  0  0  0  0  0
##   101   0  0  0  0  0  0  1  0  0  0  0  0  0
##   102   0  1  2  1  1  1  0  0  0  0  0  0  0
##   103   2  4  3  1  2  1  1  1  0  0  0  0  0
##   104  10  2  7  1  1  1  2  0  0  0  0  0  0
##   105   0  0  0  1  0  0  0  0  0  0  0  0  0
##   106   0  1  0  0  0  0  0  0  0  0  0  0  0
##   107   1  0  1  0  0  1  0  0  0  0  0  0  0
##   108   1  0  0  0  0  1  1  0  0  0  0  0  0
##   109   3  0  0  1  0  1  2  0  0  0  0  0  0
##   110   0  0  0  1  0  0  0  0  0  0  0  0  0
##   111   0  0  1  0  0  0  0  0  0  0  0  0  0
##   112   1  0  0  0  0  0  0  0  0  0  0  0  0
##   113   1  0  0  0  1  1  1  0  0  0  0  0  0
##   114   1  3  3  4  1  1  1  0  0  0  0  0  0
##   115   9  9  7  5  1  4  3  0  0  0  0  0  0
##   117   0  0  0  0  1  0  0  0  0  0  0  0  0
##   119   0  0  1  1  0  0  0  0  0  0  0  0  0
##   121   1  1  2  0  0  0  0  0  0  0  0  0  0
##   123   0  0  1  0  0  0  0  0  0  0  0  0  0
##   125   0  1  0  0  0  0  2  0  0  0  0  0  0
##   126   1  2  0  0  1  0  0  0  0  0  0  0  0
##   127   3  4  4  0  2  0  3  0  0  0  0  0  0
##   129   0  0  0  0  0  0  1  0  0  0  0  0  0
##   130   0  0  1  0  0  0  0  0  0  0  0  0  0
##   131   0  1  0  0  0  0  0  0  0  0  0  0  0
##   132   0  0  1  0  0  0  2  0  0  0  0  0  0
##   133   0  0  1  0  1  0  0  0  0  0  0  0  0
##   136   0  0  1  0  0  0  0  0  0  0  0  0  0
##   137   3  0  0  0  0  0  0  0  0  0  0  0  0
##   138   5  6  5  1  1  1  1  0  0  0  0  0  0
##   139   1  0  0  1  0  0  0  0  0  0  0  0  0
##   140   0  0  0  0  0  0  1  0  0  0  0  0  0
##   143   0  0  0  1  0  0  0  0  0  0  0  0  0
##   144   0  0  1  1  1  1  0  0  0  0  0  0  0
##   145   0  0  0  1  0  0  0  0  0  0  0  0  0
##   148   1  0  0  0  0  0  1  0  0  0  0  0  0
##   149   1  2  6  1  3  0  2  0  0  0  0  0  0
##   150   1  0  2  0  1  0  0  0  0  0  0  0  0
##   153   0  1  1  0  0  0  0  0  0  0  0  0  0
##   156   0  0  0  2  1  0  0  0  0  0  0  0  0
##   160   0  0  0  1  0  0  1  0  0  0  0  0  0
##   161   0  0  1  0  0  1  0  0  0  0  0  0  0
##   162   2  1  1  1  2  0  0  0  0  0  0  0  0
##   164   0  0  0  1  0  0  0  0  0  0  0  0  0
##   165   0  0  1  0  0  0  0  0  0  0  0  0  0
##   167   1  0  2  0  0  0  2  0  0  0  0  0  0
##   168   1  0  0  0  0  0  0  0  0  0  0  0  0
##   171   2  0  1  0  0  0  2  0  0  0  0  0  0
##   172   1  0  0  1  2  1  1  0  0  0  0  0  0
##   173   8  5  6  3  1  1  2  0  0  0  0  0  0
##   180   0  1  0  0  0  0  0  0  0  0  0  0  0
##   183   0  0  0  1  1  0  0  0  0  0  0  0  0
##   184   1  1  2  2  1  1  2  0  0  0  0  0  0
##   190   0  0  0  0  0  0  1  0  0  0  0  0  0
##   196   0  1  2  0  1  1  1  0  0  0  0  0  0
##   197   0  0  0  1  0  0  0  0  0  0  0  0  0
##   201   0  0  1  0  0  0  0  0  0  0  0  0  0
##   207   0  2  0  0  0  1  0  0  0  0  0  0  0
##   208   0  1  1  1  1  0  0  0  0  0  0  0  0
##   212   0  0  0  0  0  0  1  0  0  0  0  0  0
##   213   0  1  1  0  0  0  0  0  0  0  0  0  0
##   214   2  0  0  1  0  0  0  0  0  0  0  0  0
##   215   1  0  0  0  0  0  0  0  0  0  0  0  0
##   218   1  1  1  0  1  0  1  0  0  0  0  0  0
##   225   1  0  1  2  0  0  0  0  0  0  0  0  0
##   230   2  2  2  4  1  1  1  0  0  0  0  0  0
##   231   3  1  0  4  1  1  0  0  0  0  0  0  0
##   253   3  0  1  0  0  0  2  0  0  0  0  0  0
##   259   1  0  0  0  0  0  0  0  0  0  0  0  0
##   265   0  1  0  0  0  0  0  0  0  0  0  0  0
##   277   0  0  0  1  0  0  0  0  0  0  0  0  0
##   287   0  2  3  1  0  0  2  0  0  0  0  0  0
##   288   0  1  0  0  0  0  0  0  0  0  0  0  0
##   290   1  0  0  0  0  0  0  0  0  0  0  0  0
##   300   0  0  0  0  0  0  1  0  0  0  0  0  0
##   305   0  0  1  0  0  0  0  0  0  0  0  0  0
##   311   0  0  0  0  0  0  2  0  0  0  0  0  0
##   316   0  0  0  1  0  0  0  0  0  0  0  0  0
##   317   0  0  0  0  1  0  0  0  0  0  0  0  0
##   322   0  0  0  0  0  0  1  0  0  0  0  0  0
##   330   0  0  0  1  0  0  0  0  0  0  0  0  0
##   331   0  0  0  1  0  0  0  0  0  0  0  0  0
##   333   0  0  0  1  0  0  0  0  0  0  0  0  0
##   345   0  0  3  1  2  2  3  0  0  1  0  1  0
##   346   1  1  0  0  0  0  1  0  0  0  0  0  0
##   356   0  0  0  0  1  0  0  0  0  0  0  0  0
##   363   0  0  0  0  0  0  1  0  0  0  0  0  0
##   368   0  0  1  0  0  0  0  0  0  0  0  0  0
##   369   0  0  0  0  2  0  0  0  0  0  0  0  0
##   374   1  0  0  1  0  0  0  0  0  0  0  0  0
##   379   1  0  0  0  0  0  0  0  0  0  0  0  0
##   391   1  0  0  0  0  0  0  0  0  0  0  1  0
##   403   1  0  3  0  1  1  2  0  0  0  0  0  0
##   426   0  0  1  0  0  0  1  0  0  0  0  0  0
##   432   0  0  1  0  0  0  0  0  0  0  0  0  0
##   438   0  0  1  0  0  0  1  0  0  0  0  0  0
##   443   0  0  1  0  0  0  1  0  0  0  0  0  0
##   449   1  0  0  0  0  0  0  0  0  0  0  0  0
##   460   0  1  1  0  0  0  3  0  0  0  0  0  0
##   461   0  0  0  0  0  0  1  0  0  0  0  0  0
##   483   0  0  0  0  0  0  1  0  0  0  0  0  0
##   490   0  1  0  0  0  0  0  0  0  0  0  0  0
##   509   1  0  0  0  0  0  0  0  0  0  0  0  0
##   515   0  0  0  0  0  0  0  1  0  0  0  0  0
##   518   0  0  1  0  1  0  1  0  0  0  0  0  0
##   576   0  0  0  2  1  0  3  0  0  0  0  0  0
##   577   0  0  0  1  0  0  0  0  0  0  0  0  0
##   599   0  0  0  1  0  0  0  0  0  0  0  0  0
##   610   0  0  0  0  0  0  1  0  0  0  0  0  0
##   611   0  0  0  1  0  0  0  0  0  0  0  0  0
##   633   0  0  1  0  0  0  0  0  0  0  0  0  0
##   645   0  0  0  0  0  0  1  0  0  0  0  0  0
##   656   0  0  0  0  0  0  1  0  0  0  0  0  0
##   683   0  0  0  0  0  0  1  0  0  0  0  0  0
##   691   1  0  1  0  1  0  1  0  0  0  0  0  0
##   724   0  0  0  0  0  0  1  0  0  0  0  0  0
##   749   0  0  0  0  1  0  1  0  0  0  0  0  0
##   760   0  0  0  0  0  0  1  0  0  0  0  0  0
##   773   0  0  0  0  0  0  1  0  0  0  0  0  0
##   800   0  0  0  0  0  0  0  0  0  0  0  1  0
##   805   0  0  0  0  1  0  0  0  0  0  0  0  0
##   806   1  0  0  0  0  0  1  0  0  0  0  0  0
##   822   0  0  0  0  0  0  1  0  0  0  0  0  0
##   823   0  0  0  0  0  0  1  0  0  0  0  0  0
##   863   0  0  1  0  0  0  0  0  0  0  0  0  0
##   864   0  0  0  0  0  0  1  0  0  0  0  0  0
##   876   0  0  0  0  0  0  1  0  0  0  0  0  0
##   921   1  0  0  0  0  0  0  0  0  0  0  0  0
##   979   0  0  1  0  1  0  0  0  0  0  0  0  0
##   980   0  0  1  0  0  0  0  0  0  0  0  0  0
##   1035  0  0  0  0  0  0  1  0  0  0  0  0  0
##   1036  0  0  0  0  0  0  0  0  0  0  1  0  0
##   1152  0  0  0  1  0  0  0  0  0  0  0  0  0
##   1261  0  0  0  0  0  0  1  0  0  0  0  0  0
##   1382  1  0  0  0  0  0  0  0  0  0  0  0  0
##   1498  0  0  0  0  0  0  1  0  0  0  0  0  0
##   1612  1  0  0  0  0  0  0  0  0  0  0  0  0
##   1727  0  0  0  0  0  0  1  0  0  0  0  0  0
##   2056  0  0  0  0  0  0  1  0  0  0  0  0  0
##   2073  0  0  0  0  0  0  0  0  0  0  0  1  0
##   2303  0  0  0  0  0  0  1  0  0  0  0  0  0
##   3283  1  0  0  0  0  0  0  0  0  0  0  0  0
##   4607  1  0  0  0  0  0  0  0  0  0  0  0  0
##   9502  1  0  0  0  0  0  0  0  0  0  0  0  0
mytable1<-xtabs(~price+overall_satisfaction, data=hotel.df)
mytable1
##      overall_satisfaction
## price  2  3 3.5  4 4.5  5
##   23   0  0   1  0   1  1
##   29   0  0   0  2   0  0
##   30   0  0   0  1   0  0
##   31   0  0   0  0   2  0
##   32   0  0   0  2   1  0
##   33   0  0   0  0   1  0
##   34   0  0   0  0   1  0
##   35   0  0   0  0   4  0
##   36   0  0   0  0   0  1
##   37   0  0   1  0   0  0
##   38   0  0   0  0   1  1
##   40   0  0   0  3   4  1
##   41   0  0   0  0   1  0
##   43   0  0   0  1   1  0
##   45   0  0   0  0   1  2
##   46   0  0   1  0   8  2
##   47   0  0   0  0   2  0
##   48   0  0   0  1   3  0
##   49   0  0   1  1   2  0
##   50   0  0   0  1   0  1
##   52   0  0   0  1   4  2
##   53   0  0   0  1   1  0
##   55   0  0   0  0   1  0
##   56   0  0   0  1   1  0
##   57   0  0   0  0   5  3
##   58   0  0   1  1  13 11
##   59   0  0   0  0   1  0
##   60   0  0   0  0   1  1
##   61   0  0   0  1   1  0
##   62   0  0   0  1   2  0
##   63   0  0   1  2   4  2
##   64   0  0   0  0   1  1
##   65   0  0   0  1   1  0
##   66   0  0   0  1   3  0
##   67   0  0   0  0   1  2
##   68   0  0   0  1   3  3
##   69   0  0   0  4  10  5
##   70   0  0   0  0   1  0
##   71   0  0   0  1   1  1
##   72   0  0   0  0   1  0
##   74   0  0   0  1   0  2
##   75   0  0   0  0   6  4
##   79   0  0   0  0   1  1
##   80   0  0   0  0   7  9
##   83   0  0   0  0   2  0
##   84   0  0   0  0   1  0
##   85   0  0   0  0   2  1
##   87   0  0   1  0   1  8
##   89   0  0   0  0   0  1
##   90   1  1   0  0   0  0
##   91   0  0   0  0   5  2
##   92   0  0   0  2  13  8
##   93   0  0   1  1   4  4
##   94   0  0   0  0   1  0
##   98   0  0   0  1   8  4
##   101  0  0   0  0   1  0
##   102  0  0   0  1   4  0
##   103  0  0   0  0   0  7
##   104  0  0   1  1   5  4
##   106  0  0   0  0   1  1
##   107  0  0   1  0   1  0
##   109  0  0   0  0   1  1
##   110  0  0   0  0   1  0
##   113  0  0   1  0   0  1
##   114  0  0   0  0   5  1
##   115  0  0   0  0   9  5
##   117  0  0   0  0   0  1
##   119  0  0   0  0   1  0
##   121  0  0   0  0   0  1
##   123  0  0   0  0   0  1
##   127  0  0   0  2   2  3
##   130  0  0   0  0   1  0
##   132  0  0   0  0   0  1
##   133  0  0   0  2   0  0
##   138  0  0   0  1   5  4
##   139  0  0   0  0   2  0
##   145  0  0   0  0   0  1
##   149  0  0   0  1   3  4
##   150  0  0   1  0   0  0
##   153  0  0   0  1   0  1
##   156  0  0   0  0   1  0
##   161  0  0   0  0   0  1
##   162  0  0   0  1   4  2
##   167  0  0   0  0   1  0
##   173  0  0   0  3   2  3
##   184  0  0   0  0   0  2
##   185  0  0   0  0   1  0
##   190  0  0   1  0   0  0
##   196  0  0   0  0   2  1
##   207  0  0   0  0   0  1
##   208  0  0   0  0   0  1
##   218  0  0   0  0   1  0
##   225  0  0   0  0   1  1
##   230  0  0   0  1   2  0
##   231  0  0   0  0   1  1
##   253  0  0   0  0   1  1
##   265  0  0   0  0   0  1
##   277  0  0   0  0   0  1
##   287  0  0   1  0   0  2
##   288  0  0   0  0   0  1
##   300  0  0   0  1   0  0
##   305  0  0   0  0   1  0
##   330  0  0   0  0   0  1
##   345  0  0   0  0   2  0
##   346  0  0   0  0   0  2
##   369  0  0   0  0   1  0
##   403  0  0   0  1   0  2
##   404  0  0   0  0   1  0
##   432  0  0   0  0   0  1
##   443  0  0   0  0   0  1
##   518  0  0   0  0   0  1
##   576  0  0   0  0   0  2
##   599  0  0   0  0   0  1
##   749  0  0   0  0   0  1
##   863  0  0   0  0   0  1
##   980  0  0   0  0   1  0

5- Draw a boxplot that belongs to your study

boxplot(hotel.df$price, xlab="price", ylab="", main="PRICE OF ROOMS", horizontal=TRUE)

boxplot(hotel.df$price~ hotel.df$bedrooms, xlab="price", ylab="No. of bedrooms", main="PRICE OF ROOMS", horizontal=TRUE, col=c("red", "blue", "green"))

boxplot(hotel.df$price~ hotel.df$reviews, xlab="price", ylab="Reviews", main="PRICE OF ROOMS", horizontal=TRUE, col=c("red", "blue", "green"))

boxplot(hotel.df$price~ hotel.df$overall_satisfaction, xlab="price", ylab="Overall Satisfaction", main="PRICE OF ROOMS", horizontal=TRUE, col=c("red", "blue", "green"))

boxplot(hotel.df$price~ hotel.df$accommodates, xlab="price", ylab="Accomodations", main="PRICE OF ROOMS", horizontal=TRUE, col=c("red", "blue", "green"))

6- Draw histogram for your suitable data fields

hist(hotel.df$price, main="PRICE FREQUENCY",xlab = "price of rooms",breaks = 25, xlim= c(0,3000), col="green")

7- Draw suitable plot for your data analysis.

plot(x= hotel.df$price, y=hotel.df$bedrooms, col="blue", main="bedrooms v/s price", xlab = "price", ylab = "number of bedrooms")

plot(x= hotel.df$price, y=hotel.df$overall_satisfaction, col="blue", main="overall satisfaction v/s price", xlab = "price", ylab = "Overall Satisfaction")

plot(x= hotel.df$price, y=hotel.df$minstay, col="blue", main="minstay v/s price", xlab = "price", ylab = "Minstay")

8- Create a correlation matrix

new_data<- hotel.df[,6:11]
r=cor(new_data)
r
##                          reviews overall_satisfaction accommodates
## reviews               1.00000000                   NA   -0.1539512
## overall_satisfaction          NA                    1           NA
## accommodates         -0.15395117                   NA    1.0000000
## bedrooms                      NA                   NA           NA
## price                -0.09723858                   NA    0.3146828
## minstay                       NA                   NA           NA
##                      bedrooms       price minstay
## reviews                    NA -0.09723858      NA
## overall_satisfaction       NA          NA      NA
## accommodates               NA  0.31468282      NA
## bedrooms                    1          NA      NA
## price                      NA  1.00000000      NA
## minstay                    NA          NA       1

9- Visualize your correlation matrix using corrgram

library(corrgram)
corrgram(hotel.df, order = T, text.panel=panel.txt,
         lower.panel = panel.shade,
         upper.panel = panel.pie, main="Corrgram of all variables")

10- Create a scatterplot matrix for your dataset

library(car)
scatterplotMatrix(formula=~host_id+reviews+overall_satisfaction+price,cex=0.6,data = hotel.df,diagonal="histogram")

11- Run a suitable test to check your hypothesis for your suitable

Null Hypothesis - There is no correlation between the price and minstay

cor.test(hotel.df$price,hotel.df$minstay)
## 
##  Pearson's product-moment correlation
## 
## data:  hotel.df$price and hotel.df$minstay
## t = 3.1192, df = 933, p-value = 0.001869
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03772307 0.16463048
## sample estimates:
##       cor 
## 0.1015901

Since p<0.05 hence we reject the null hypothesis.

12- Run a t-test to analyse your hypothesis

t.test(hotel.df$price,hotel.df$minstay)
## 
##  Welch Two Sample t-test
## 
## data:  hotel.df$price and hotel.df$minstay
## t = 14.133, df = 998.07, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  155.0829 205.0945
## sample estimates:
##  mean of x  mean of y 
## 183.547548   3.458824