Store.df <- read.csv("E:/Documents/internship-R/Store.df.csv")
library(psych)
## Warning: package 'psych' was built under R version 3.4.3
View(Store.df)
describe(Store.df)
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max      range  skew kurtosis       se
## store           1.00      75.00      74.00  0.00    -1.25     2.52
## Sales      699306.00 2113089.00 1413783.00  0.71    -0.09 35164.25
## Profit     122180.00  518998.00  396818.00  0.62    -0.21 10323.49
## MTenure         0.00     277.99     277.99  2.01     3.90     6.66
## CTenure         0.89     114.15     113.26  3.52    15.00     2.04
## Pop          1046.00   26519.00   25473.00  0.62    -0.23   682.62
## Comp            1.65      11.13       9.48  2.48    11.31     0.15
## Visibility      2.00       5.00       3.00  0.25    -0.38     0.09
## PedCount        1.00       5.00       4.00  0.00    -0.52     0.11
## Res             0.00       1.00       1.00 -4.60    19.43     0.02
## Hours24         0.00       1.00       1.00 -1.82     1.32     0.04
## CrewSkill       2.06       4.64       2.58 -0.43     1.64     0.05
## MgrSkill        2.96       4.62       1.67  0.27    -0.53     0.05
## ServQual       57.90     100.00      42.10 -0.66    -0.72     1.46

mean and standard deviation of Profit

mean(Store.df$Profit)
## [1] 276313.6
sd(Store.df$Profit)
## [1] 89404.08

mean and standard deviation of MTenure

mean(Store.df$MTenure) 
## [1] 45.29644
sd(Store.df$MTenure)
## [1] 57.67155

mean and standard deviation of CTenure

mean(Store.df$CTenure)
## [1] 13.9315
sd(Store.df$CTenure)
## [1] 17.69752

Print the {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 most profitable stores

attach(Store.df)
storeasc <- Store.df[order(-Profit),]
storeasc[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550

Print the {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 least profitable stores

attach(Store.df)
## The following objects are masked from Store.df (pos = 3):
## 
##     Comp, CrewSkill, CTenure, Hours24, MgrSkill, MTenure,
##     PedCount, Pop, Profit, Res, Sales, ServQual, store, Visibility
storedec <- Store.df[order(Profit),]
storedec[1:10,1:5]
##    store   Sales Profit     MTenure   CTenure
## 57    57  699306 122180  24.3485700  2.956879
## 66    66  879581 146058 115.2039000  3.876797
## 41    41  744211 147327  14.9180200 11.926080
## 55    55  925744 147672   6.6703910 18.365500
## 32    32  828918 149033  36.0792600  6.636550
## 13    13  857843 152513   0.6571813  1.577002
## 54    54  811190 159792   6.6703910  3.876797
## 52    52 1073008 169201  24.1185600  3.416838
## 61    61  716589 177046  21.8184200 13.305950
## 37    37 1202917 187765  23.1985000  1.347023

Draw a scatter plot of Profit vs. MTenure

library(car)
## Warning: package 'car' was built under R version 3.4.3
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(Profit ~ MTenure,data = Store.df)

Draw a scatter plot of Profit vs. CTenure

library(car)
scatterplot(Profit ~ CTenure,data = Store.df)

measure the correlation between Profit and MTenure

round(cor(Store.df$Profit,Store.df$MTenure),digits = 2)
## [1] 0.44

measure the correlation between Profit and CTenure

round(cor(Store.df$Profit,Store.df$CTenure),digits = 2)
## [1] 0.26

Run a Pearson’s Correlation test on the correlation between Profit and MTenure

cor.test(Store.df$Profit,Store.df$MTenure,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  Store.df$Profit and Store.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

p-vlaue= 8.193e-05 .This implies that p-value is much smaller(<0.05).So we reject the null hypothesis,which implies that Profit and MTenure have a relation.

Run a Pearson’s Correlation test on the correlation between Profit and CTenure

cor.test(Store.df$Profit,Store.df$CTenure,method = "pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  Store.df$Profit and Store.df$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

p-vlaue= 0.02562 .This implies that p-value is smaller(<0.05).So reject the null hypothesis,which means Profit and CTenure have a relation.

Run a regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}

regprofit <- lm(Profit ~ MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility, data = Store.df)
summary(regprofit)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = Store.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?

For every unit increase in MTenure , the profit increases by 760.993.

What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month?

For every unit increase in CTenure , there is an increase of 944.978 in Profit.

EXECUTIVE SUMMARY

  1. The regression results show that Managers’s tenure is correlated with store’s Annual profits. This means that the profit of stores tend to increase when they have more experienced managers.

  2. Crew’s tenure is also correlated to store’s Annual profits. Therefore, the years of experience of crew members adds to the profits of the stores.

  3. The R- square value is 0.6379, which means that all the explanatory variables explain 63.79% of variation in the explained variables i.e. Profits.

4.The adjusted R-squared value is 0.594, which reduces when we add explanatory variables, which means that adding additional explanatory variables can be problematic.

  1. These four points show that Company’s profit can be increased by providing training and skill development courses to the crew and managers of the store along with providing bonuses and other attractions in order to increase the tenure and experience of the crew and managers at Store24 which will ultimately increase the profits of the store.