Summary

In this project, I aimed to mine the beatAML dataset (Internal release wave 2, 2017 June) to identify potential anti-leukemia mechanisms of drug BCL-2 inhibitor Venetoclax.

beatAML overview

beatAML overview

Workflow

  1. Identify labIDs that have overlapped Venetoclax sensitivity data and complete RNA-seq data.
  2. Extract RNA-seq data for the Venetoclax-sensitive and Venetoclax-resistant specimens.
  3. Perform RNA-seq analysis to identify significantly different genes.
  4. Perform k-TSP analysis to identify top scoring paired genes.
  5. Perform GSEA analysis to identify top dysregulated pathways in Venetoclax-sensitive and -resistant AML.

Overview of drug screening data

270 unique drugs screened.
For each drug, there are 3 replicates.
1924 unique lab IDs.
1500 unique patient IDs.

Unique specimen types:

## # A tibble: 3 x 1
##          specimen_type
##                 <fctr>
## 1 Bone Marrow Aspirate
## 2        Leukapheresis
## 3     Peripheral Blood

Specific diagnosis types:

## # A tibble: 64 x 1
##                                               specific_diagnosis
##                                                           <fctr>
##  1                              Acute megakaryoblastic leukaemia
##  2                    Acute monoblastic and monocytic leukaemia 
##  3                                         AML with mutated NPM1
##  4                                  Acute myeloid leukaemia, NOS
##  5                                Acute myelomonocytic leukaemia
##  6                       AML with myelodysplasia-related changes
##  7                                        AML without maturation
##  8 AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
##  9                                           AML with maturation
## 10                              AML with minimal differentiation
## # ... with 54 more rows

Unique drugs sequenced:

## # A tibble: 270 x 1
##            drug
##          <fctr>
##  1    Nilotinib
##  2 Flavopiridol
##  3         H-89
##  4     LY294002
##  5      GW-2580
##  6      PD98059
##  7       VX-745
##  8    Sunitinib
##  9       STO609
## 10    Sorafenib
## # ... with 260 more rows

LabID identification

Identify labIDs with Venetoclax sensitivity data

## [1] 1136   21
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##  0.004572  0.005215  0.006530  0.486500  0.018430 10.000000
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##  0.004572  0.007476  0.014480  1.337000  0.415800 10.000000
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##  0.004572  0.016350  0.333700  3.686000 10.000000 10.000000
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##  0.004572  0.086140 10.000000  6.025000 10.000000 10.000000
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##  0.008215  7.849000 10.000000  7.858000 10.000000 10.000000
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   -65.4   181.9   409.5   467.7   663.6  7506.0
## # A tibble: 867 x 1
##      lab_id
##       <chr>
##  1 14-00739
##  2 14-00752
##  3 14-00760
##  4 14-00765
##  5 14-00774
##  6 14-00781
##  7 14-00787
##  8 14-00789
##  9 14-00798
## 10 14-00801
## # ... with 857 more rows

Identify LabIDs with completed RNA-seq data

## # A tibble: 119 x 3
##    XRNAseqID    LabID RNAseqID
##        <chr>    <chr>    <chr>
##  1 X20.00051 16-00339 20-00051
##  2 X20.00058 16-00459 20-00058
##  3 X20.00059 16-00465 20-00059
##  4 X20.00050 16-00332 20-00050
##  5 X20.00052 16-00351 20-00052
##  6 X20.00057 16-00410 20-00057
##  7 X20.00053 16-00354 20-00053
##  8 X20.00056 16-00406 20-00056
##  9 X20.00060 16-00474 20-00060
## 10 X20.00049 16-00150 20-00049
## # ... with 109 more rows

Identify LabIDs with complete Venetoclax sensitivity and RNA-seq data

## # A tibble: 73 x 1
##       LabID
##       <chr>
##  1 16-00339
##  2 16-00459
##  3 16-00465
##  4 16-00332
##  5 16-00351
##  6 16-00410
##  7 16-00354
##  8 16-00474
##  9 15-00742
## 10 16-00315
## # ... with 63 more rows

Identify LabIDs that are Venetoclax-sensitive or -resistant

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   32.73  183.20  417.00  460.20  697.60 1220.00
## # A tibble: 18 x 1
##       LabID
##       <chr>
##  1 16-00073
##  2 16-01227
##  3 16-00867
##  4 16-01270
##  5 16-00540
##  6 16-00770
##  7 16-01061
##  8 16-01262
##  9 16-01103
## 10 16-01010
## 11 16-00951
## 12 16-00498
## 13 16-01219
## 14 16-00315
## 15 16-01185
## 16 16-00519
## 17 16-00525
## 18 16-00031
## # A tibble: 18 x 1
##       LabID
##       <chr>
##  1 16-00731
##  2 16-00339
##  3 16-00702
##  4 16-00836
##  5 16-00708
##  6 16-01216
##  7 16-01102
##  8 16-00538
##  9 16-00541
## 10 16-00627
## 11 16-00831
## 12 16-00771
## 13 16-00548
## 14 16-00815
## 15 16-01017
## 16 16-01049
## 17 16-00701
## 18 16-01121
Check specific diagnosis
## Warning: Column `LabID`/`labId` joining character vector and factor,
## coercing into character vector
## [1] "Venetoclax-sensitive specimens:"
## # A tibble: 18 x 12
##    Venetoclax    LabID patientId
##         <chr>    <chr>     <int>
##  1  sensitive 16-00073      2443
##  2  sensitive 16-01227      4275
##  3  sensitive 16-00867      4042
##  4  sensitive 16-01270      4317
##  5  sensitive 16-00540      2721
##  6  sensitive 16-00770      4007
##  7  sensitive 16-01061      4197
##  8  sensitive 16-01262      4303
##  9  sensitive 16-01103      4197
## 10  sensitive 16-01010      4197
## 11  sensitive 16-00951      4075
## 12  sensitive 16-00498      2706
## 13  sensitive 16-01219      4271
## 14  sensitive 16-00315      1973
## 15  sensitive 16-01185      4252
## 16  sensitive 16-00519      2713
## 17  sensitive 16-00525      2715
## 18  sensitive 16-00031      2477
## # ... with 9 more variables: specificDxAtInclusion <fctr>,
## #   karyotype <fctr>, ageAtSpecimenAcquisition <int>, specimenType <fctr>,
## #   priorTreatmentTypes <fctr>, priorTreatmentRegimens <fctr>,
## #   priorTreatmentStages <fctr>, percentBlastsBM <fctr>,
## #   percentBlastsPB <fctr>
## Warning: Column `LabID`/`labId` joining character vector and factor,
## coercing into character vector
## [1] "Venetoclax-resistant specimens:"
## # A tibble: 18 x 12
##    Venetoclax    LabID patientId                   specificDxAtInclusion
##         <chr>    <chr>     <int>                                  <fctr>
##  1  resistant 16-00731      3990            Acute myeloid leukaemia, NOS
##  2  resistant 16-00339        NA                                    <NA>
##  3  resistant 16-00702      3976                                 Unknown
##  4  resistant 16-00836      4039                   AML with mutated NPM1
##  5  resistant 16-00708      3979 AML with myelodysplasia-related changes
##  6  resistant 16-01216      4263 AML with myelodysplasia-related changes
##  7  resistant 16-01102      4232                                 Unknown
##  8  resistant 16-00538      2694            Acute myeloid leukaemia, NOS
##  9  resistant 16-00541        NA                                    <NA>
## 10  resistant 16-00627      2785                                 Unknown
## 11  resistant 16-00831      4038            Acute myeloid leukaemia, NOS
## 12  resistant 16-00771      4008            Acute myeloid leukaemia, NOS
## 13  resistant 16-00548      2119 AML with myelodysplasia-related changes
## 14  resistant 16-00815      4030                   AML with mutated NPM1
## 15  resistant 16-01017      4043            Acute myeloid leukaemia, NOS
## 16  resistant 16-01049      4207            Acute myeloid leukaemia, NOS
## 17  resistant 16-00701      2747        Chronic myelomonocytic leukaemia
## 18  resistant 16-01121      4239                                 Unknown
## # ... with 8 more variables: karyotype <fctr>,
## #   ageAtSpecimenAcquisition <int>, specimenType <fctr>,
## #   priorTreatmentTypes <fctr>, priorTreatmentRegimens <fctr>,
## #   priorTreatmentStages <fctr>, percentBlastsBM <fctr>,
## #   percentBlastsPB <fctr>
Plot viability curves for Venetoclax-sensitive and -resistant LabIDs

Extract RNA-seq data of Venetoclax-sensitive and -resistant specimens

## # A tibble: 18 x 3
##    XRNAseqID    LabID RNAseqID
##        <chr>    <chr>    <chr>
##  1 X20.00068 16-00315 20-00068
##  2 X20.00076 16-00525 20-00076
##  3 X20.00095 16-00519 20-00095
##  4 X20.00317 16-00540 20-00317
##  5 X20.00312 16-00073 20-00312
##  6 X20.00350 16-00770 20-00350
##  7 X20.00420 16-00867 20-00420
##  8 X20.00417 16-00498 20-00417
##  9 X20.00449 16-00951 20-00449
## 10 X20.00456 16-01061 20-00456
## 11 X20.00453 16-01010 20-00453
## 12 X20.00492 16-01103 20-00492
## 13 X20.00513 16-01270 20-00513
## 14 X20.00508 16-01227 20-00508
## 15 X20.00490 16-00031 20-00490
## 16 X20.00511 16-01262 20-00511
## 17 X20.00499 16-01185 20-00499
## 18 X20.00505 16-01219 20-00505
## # A tibble: 18 x 3
##    XRNAseqID    LabID RNAseqID
##        <chr>    <chr>    <chr>
##  1 X20.00051 16-00339 20-00051
##  2 X20.00335 16-00771 20-00335
##  3 X20.00340 16-00836 20-00340
##  4 X20.00322 16-00627 20-00322
##  5 X20.00327 16-00708 20-00327
##  6 X20.00331 16-00731 20-00331
##  7 X20.00316 16-00538 20-00316
##  8 X20.00338 16-00815 20-00338
##  9 X20.00325 16-00702 20-00325
## 10 X20.00318 16-00541 20-00318
## 11 X20.00324 16-00701 20-00324
## 12 X20.00352 16-00831 20-00352
## 13 X20.00348 16-00548 20-00348
## 14 X20.00454 16-01017 20-00454
## 15 X20.00463 16-01102 20-00463
## 16 X20.00491 16-01049 20-00491
## 17 X20.00504 16-01216 20-00504
## 18 X20.00495 16-01121 20-00495
## # A tibble: 63,677 x 19
##      Symbol X20.00068 X20.00076 X20.00095 X20.00317 X20.00312 X20.00350
##      <fctr>     <int>     <int>     <int>     <int>     <int>     <int>
##  1   TSPAN6         7        87         1         1         7         3
##  2     TNMD         0         0         0         0         0         0
##  3     DPM1      1272      1137      1624      1228      1150       918
##  4    SCYL3      1398       999      2134      1263       860       419
##  5 C1orf112       537       859      1710       428       442        88
##  6      FGR      2368      7039      1796      6662     10249      5241
##  7      CFH        53       163       137      4021        35         9
##  8    FUCA2       757       689      3848      2520      2337       546
##  9     GCLC      2131      1541      5039      4641      1449       897
## 10     NFYA      2831      4270      8549      2220      3073      1001
## # ... with 63,667 more rows, and 12 more variables: X20.00420 <int>,
## #   X20.00417 <int>, X20.00449 <int>, X20.00456 <int>, X20.00453 <int>,
## #   X20.00492 <int>, X20.00513 <int>, X20.00508 <int>, X20.00490 <int>,
## #   X20.00511 <int>, X20.00499 <int>, X20.00505 <int>
## # A tibble: 63,677 x 19
##      Symbol X20.00051 X20.00335 X20.00340 X20.00322 X20.00327 X20.00331
##      <fctr>     <int>     <int>     <int>     <int>     <int>     <int>
##  1   TSPAN6        14         9         2         7        21         1
##  2     TNMD         0         0         0         1         0         0
##  3     DPM1      1640       598      1028       990      1503      1189
##  4    SCYL3      1057       199       841       548       679      1143
##  5 C1orf112       759        47       474       370       205       499
##  6      FGR     28388     13319     49688     57842      5305     37909
##  7      CFH       140        14       305        63        58       186
##  8    FUCA2      1458       769      2935      2784      1412      1609
##  9     GCLC      2100       628      2785      1523      2041      1725
## 10     NFYA      4902       626      2005      3397      1232      3426
## # ... with 63,667 more rows, and 12 more variables: X20.00316 <int>,
## #   X20.00338 <int>, X20.00325 <int>, X20.00318 <int>, X20.00324 <int>,
## #   X20.00352 <int>, X20.00348 <int>, X20.00454 <int>, X20.00463 <int>,
## #   X20.00491 <int>, X20.00504 <int>, X20.00495 <int>
## # A tibble: 63,677 x 37
##      Symbol X20.00068 X20.00076 X20.00095 X20.00317 X20.00312 X20.00350
##      <fctr>     <int>     <int>     <int>     <int>     <int>     <int>
##  1   TSPAN6         7        87         1         1         7         3
##  2     TNMD         0         0         0         0         0         0
##  3     DPM1      1272      1137      1624      1228      1150       918
##  4    SCYL3      1398       999      2134      1263       860       419
##  5 C1orf112       537       859      1710       428       442        88
##  6      FGR      2368      7039      1796      6662     10249      5241
##  7      CFH        53       163       137      4021        35         9
##  8    FUCA2       757       689      3848      2520      2337       546
##  9     GCLC      2131      1541      5039      4641      1449       897
## 10     NFYA      2831      4270      8549      2220      3073      1001
## # ... with 63,667 more rows, and 30 more variables: X20.00420 <int>,
## #   X20.00417 <int>, X20.00449 <int>, X20.00456 <int>, X20.00453 <int>,
## #   X20.00492 <int>, X20.00513 <int>, X20.00508 <int>, X20.00490 <int>,
## #   X20.00511 <int>, X20.00499 <int>, X20.00505 <int>, X20.00051 <int>,
## #   X20.00335 <int>, X20.00340 <int>, X20.00322 <int>, X20.00327 <int>,
## #   X20.00331 <int>, X20.00316 <int>, X20.00338 <int>, X20.00325 <int>,
## #   X20.00318 <int>, X20.00324 <int>, X20.00352 <int>, X20.00348 <int>,
## #   X20.00454 <int>, X20.00463 <int>, X20.00491 <int>, X20.00504 <int>,
## #   X20.00495 <int>

RNA-seq analysis using edgeR

Format data

## 
## FALSE  TRUE 
## 41522 15116

TRUE identifies number of genes with 0 counts across all specimens.

Remove low-expressing genes

After removing low-expressing genes, out of the starting 56638 genes, 14462 are kept.

Normalization

##  [1] 1.116 1.127 1.150 1.155 1.140 0.774 1.269 1.156 1.258 1.107 1.276 1.177 0.972 0.747
## [15] 0.903 0.987 1.169 1.122 1.077 0.732 1.086 0.801 1.040 1.090 0.798 0.840 1.027 0.883
## [29] 0.689 0.974 1.040 0.894 0.787 1.003 0.947 1.182

MDS plot

Mean-difference plot

Dispersion estimation

##    resistant sensitive
## 1          0         1
## 2          0         1
## 3          0         1
## 4          0         1
## 5          0         1
## 6          0         1
## 7          0         1
## 8          0         1
## 9          0         1
## 10         0         1
## 11         0         1
## 12         0         1
## 13         0         1
## 14         0         1
## 15         0         1
## 16         0         1
## 17         0         1
## 18         0         1
## 19         1         0
## 20         1         0
## 21         1         0
## 22         1         0
## 23         1         0
## 24         1         0
## 25         1         0
## 26         1         0
## 27         1         0
## 28         1         0
## 29         1         0
## 30         1         0
## 31         1         0
## 32         1         0
## 33         1         0
## 34         1         0
## 35         1         0
## 36         1         0
## attr(,"assign")
## [1] 1 1
## attr(,"contrasts")
## attr(,"contrasts")$group_name
## [1] "contr.treatment"
##          resistant sensitive
## DPM1        -10.39    -10.58
## SCYL3       -11.00    -10.75
## C1orf112    -11.88    -11.46
## FGR          -7.17     -9.33
## CFH         -10.59    -10.11
## FUCA2        -9.94    -10.17

Differential expression analysis

## Coefficient:  -1*resistant 1*sensitive 
##         logFC logCPM    F   PValue      FDR
## SLC15A3 -4.35   5.99 82.9 5.69e-11 8.23e-07
## LMTK2   -2.32   6.15 69.0 5.54e-10 2.09e-06
## TCIRG1  -1.91   8.13 67.9 6.63e-10 2.09e-06
## MAPK13  -2.40   3.83 67.1 7.69e-10 2.09e-06
## TBC1D12 -5.15   2.88 67.3 7.71e-10 2.09e-06
## SNTB2   -2.69   2.92 65.9 9.52e-10 2.09e-06
## EFHD2   -1.75   8.52 65.6 1.01e-09 2.09e-06
## STX11   -3.07   6.86 63.1 1.66e-09 3.00e-06
## C5AR1   -4.79   7.86 62.3 1.95e-09 3.13e-06
## SEC14L1 -2.04   7.54 61.0 2.40e-09 3.45e-06
##    [,1]
## -1 2943
## 0  8371
## 1  3148
## Coefficient:  -1*resistant 1*sensitive 
##               logFC unshrunk.logFC logCPM   PValue      FDR
## SLC15A3       -4.35          -4.35   5.99 1.16e-09 1.67e-05
## TBC1D12       -5.15          -5.16   2.88 5.46e-09 3.95e-05
## MAFB          -6.38          -6.38   7.92 1.41e-08 5.95e-05
## C5AR1         -4.79          -4.79   7.86 1.65e-08 5.95e-05
## RAPH1         -4.44          -4.45   2.85 4.38e-08 1.21e-04
## PDE4A         -4.32          -4.33   4.63 5.02e-08 1.21e-04
## TMCC3         -4.03          -4.03   4.55 9.26e-08 1.91e-04
## RP11-288H12.3 -3.47          -3.47   1.91 1.20e-07 2.18e-04
## STX11         -3.07          -3.07   6.86 1.62e-07 2.26e-04
## HK3           -3.79          -3.79   7.18 1.76e-07 2.26e-04
##    [,1] 
## -1   478
## 0  13929
## 1     55

## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
##                   rn   logFC unshrunk.logFC logCPM   PValue
##     1:          DPM1 -0.2781        -0.2782 4.8097 1.00e+00
##     2:         SCYL3  0.3609         0.3609 4.2523 9.95e-01
##     3:      C1orf112  0.6196         0.6198 3.1360 7.90e-01
##     4:           FGR -3.1125        -3.1125 8.7460 2.05e-07
##     5:           CFH  0.6915         0.6916 5.0471 5.20e-01
##    ---                                                     
## 14458:  RP5-1074L1.4  0.6522         0.6525 2.6499 7.04e-01
## 14459: RP5-1065J22.8  0.2828         0.2837 0.0233 9.76e-01
## 14460:  RP11-166O4.6  1.2874         1.2907 0.4697 5.24e-02
## 14461:  RP11-548H3.1  0.0894         0.0895 0.6997 1.00e+00
## 14462: RP11-731C17.2  0.7693         0.7703 1.3287 5.33e-01

Unsupervised clustering using identified DEGs

## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess

k-TSP analysis

Identify Top Scoring Paired genes

## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
## 
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
## 
##     cov, smooth, var
## 
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggplot2':
## 
##     ggsave
## [1] 14460    36
##      [,1]             [,2]           
## [1,] "TEC"            "C5AR1"        
## [2,] "FAM216A"        "SLC15A3"      
## [3,] "GOLGA8N"        "HNRNPLL"      
## [4,] "RP11-439E19.10" "DMPK"         
## [5,] "ZNF221"         "RP11-288H12.4"

Plot representative TSP genes and random pair control

GSEA analysis

Up-regulated in Venetoclax-sensitive leukemia:

CLEARLY_LSC_UP
CLEARY_LSC_UP

CLEARY_LSC_UP

DICK_FUNCTIONAL_LSC_SIGNATURE
DICK_FUNCTIONAL_LSC

DICK_FUNCTIONAL_LSC

WANG_LEUKEMIA_RISK_PREDICTIOR_17_GENES
WANG_17

WANG_17

GOODELL_HSC_SIGNATURE
GOODELL_HSC

GOODELL_HSC

KEGG_TYROSINE_METABOLISM
KEGG_TYROSINE

KEGG_TYROSINE

KEGG_CYSTEINE_AND_METHIONINE_METABOLISM
KEGG_CYS_MET_METABOLISM

KEGG_CYS_MET_METABOLISM

KEGG_PYRUVATE_METABOLISM
KEGG_PYRUVATE

KEGG_PYRUVATE

KEGG_PURINE_METABOLISM
KEGG_PURINE

KEGG_PURINE

KEGG_PYRIMIDINE_METABOLISM
KEGG_PYRIMIDINE

KEGG_PYRIMIDINE

Up-regulated in Venetoclax-resistant leukemia:

GOODELL_MYELOID
GOODELL_MYELOID

GOODELL_MYELOID

NFKB_TARGETS
NFKB_TARGETS

NFKB_TARGETS

CEBPA_TARGETS
CEBPA_TARGETS

CEBPA_TARGETS

Session Info

sessionInfo()
## R version 3.3.2 (2016-10-31)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
## Running under: macOS Sierra 10.12.6
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] cowplot_0.9.1       switchBox_1.10.0    pROC_1.10.0         gplots_3.0.1       
##  [5] data.table_1.10.4-3 statmod_1.4.30      RColorBrewer_1.1-2  edgeR_3.16.5       
##  [9] Glimma_1.2.1        limma_3.30.13       knitr_1.17          BiocStyle_2.2.1    
## [13] stringr_1.2.0       ggplot2_2.2.1       bindrcpp_0.2        dplyr_0.7.4        
## 
## loaded via a namespace (and not attached):
##  [1] Biobase_2.34.0             tidyr_0.7.2                bit64_0.9-7               
##  [4] splines_3.3.2              gtools_3.5.0               Formula_1.2-2             
##  [7] assertthat_0.2.0           stats4_3.3.2               latticeExtra_0.6-28       
## [10] blob_1.1.0                 yaml_2.1.16                RSQLite_2.0               
## [13] backports_1.1.2            lattice_0.20-35            glue_1.2.0                
## [16] digest_0.6.12              GenomicRanges_1.26.4       XVector_0.14.1            
## [19] checkmate_1.8.5            colorspace_1.3-2           htmltools_0.3.6           
## [22] Matrix_1.2-12              plyr_1.8.4                 DESeq2_1.14.1             
## [25] XML_3.98-1.9               pkgconfig_2.0.1            genefilter_1.56.0         
## [28] zlibbioc_1.20.0            purrr_0.2.4                xtable_1.8-2              
## [31] scales_0.5.0               gdata_2.18.0               BiocParallel_1.8.2        
## [34] htmlTable_1.11.0           tibble_1.3.4               annotate_1.52.1           
## [37] IRanges_2.8.2              SummarizedExperiment_1.4.0 nnet_7.3-12               
## [40] BiocGenerics_0.20.0        lazyeval_0.2.1             survival_2.41-3           
## [43] magrittr_1.5               memoise_1.1.0              evaluate_0.10.1           
## [46] foreign_0.8-69             tools_3.3.2                S4Vectors_0.12.2          
## [49] locfit_1.5-9.1             munsell_0.4.3              cluster_2.0.6             
## [52] AnnotationDbi_1.36.2       GenomeInfoDb_1.10.3        caTools_1.17.1            
## [55] rlang_0.1.4                grid_3.3.2                 RCurl_1.95-4.8            
## [58] rstudioapi_0.7             htmlwidgets_0.9            bitops_1.0-6              
## [61] base64enc_0.1-3            labeling_0.3               rmarkdown_1.8             
## [64] gtable_0.2.0               DBI_0.7                    R6_2.2.2                  
## [67] gridExtra_2.3              bit_1.1-12                 bindr_0.1                 
## [70] Hmisc_4.0-3                rprojroot_1.2              KernSmooth_2.23-15        
## [73] stringi_1.1.6              parallel_3.3.2             Rcpp_0.12.14              
## [76] geneplotter_1.52.0         rpart_4.1-11               acepack_1.4.1