Loading Required Libraries

Summary

The dataset for this project originates from the UCI Machine Learning Repository. The Boston housing data was collected in 1978 and each of the 506 entries represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts. For the purposes of this project, the following preprocessing steps have been made to the dataset: 16 data points have an ‘MEDV’ value of 50.0. These data points likely contain missing or censored values and have been removed.

Data Load and Initial analysis

houseprice<-read.csv("housing.csv", header = TRUE)
str(houseprice)
## 'data.frame':    489 obs. of  4 variables:
##  $ RM     : num  6.58 6.42 7.18 7 7.15 ...
##  $ LSTAT  : num  4.98 9.14 4.03 2.94 5.33 ...
##  $ PTRATIO: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
##  $ MEDV   : num  504000 453600 728700 701400 760200 ...
is.na(houseprice)
##           RM LSTAT PTRATIO  MEDV
##   [1,] FALSE FALSE   FALSE FALSE
##   [2,] FALSE FALSE   FALSE FALSE
##   [3,] FALSE FALSE   FALSE FALSE
##   [4,] FALSE FALSE   FALSE FALSE
##   [5,] FALSE FALSE   FALSE FALSE
##   [6,] FALSE FALSE   FALSE FALSE
##   [7,] FALSE FALSE   FALSE FALSE
##   [8,] FALSE FALSE   FALSE FALSE
##   [9,] FALSE FALSE   FALSE FALSE
##  [10,] FALSE FALSE   FALSE FALSE
##  [11,] FALSE FALSE   FALSE FALSE
##  [12,] FALSE FALSE   FALSE FALSE
##  [13,] FALSE FALSE   FALSE FALSE
##  [14,] FALSE FALSE   FALSE FALSE
##  [15,] FALSE FALSE   FALSE FALSE
##  [16,] FALSE FALSE   FALSE FALSE
##  [17,] FALSE FALSE   FALSE FALSE
##  [18,] FALSE FALSE   FALSE FALSE
##  [19,] FALSE FALSE   FALSE FALSE
##  [20,] FALSE FALSE   FALSE FALSE
##  [21,] FALSE FALSE   FALSE FALSE
##  [22,] FALSE FALSE   FALSE FALSE
##  [23,] FALSE FALSE   FALSE FALSE
##  [24,] FALSE FALSE   FALSE FALSE
##  [25,] FALSE FALSE   FALSE FALSE
##  [26,] FALSE FALSE   FALSE FALSE
##  [27,] FALSE FALSE   FALSE FALSE
##  [28,] FALSE FALSE   FALSE FALSE
##  [29,] FALSE FALSE   FALSE FALSE
##  [30,] FALSE FALSE   FALSE FALSE
##  [31,] FALSE FALSE   FALSE FALSE
##  [32,] FALSE FALSE   FALSE FALSE
##  [33,] FALSE FALSE   FALSE FALSE
##  [34,] FALSE FALSE   FALSE FALSE
##  [35,] FALSE FALSE   FALSE FALSE
##  [36,] FALSE FALSE   FALSE FALSE
##  [37,] FALSE FALSE   FALSE FALSE
##  [38,] FALSE FALSE   FALSE FALSE
##  [39,] FALSE FALSE   FALSE FALSE
##  [40,] FALSE FALSE   FALSE FALSE
##  [41,] FALSE FALSE   FALSE FALSE
##  [42,] FALSE FALSE   FALSE FALSE
##  [43,] FALSE FALSE   FALSE FALSE
##  [44,] FALSE FALSE   FALSE FALSE
##  [45,] FALSE FALSE   FALSE FALSE
##  [46,] FALSE FALSE   FALSE FALSE
##  [47,] FALSE FALSE   FALSE FALSE
##  [48,] FALSE FALSE   FALSE FALSE
##  [49,] FALSE FALSE   FALSE FALSE
##  [50,] FALSE FALSE   FALSE FALSE
##  [51,] FALSE FALSE   FALSE FALSE
##  [52,] FALSE FALSE   FALSE FALSE
##  [53,] FALSE FALSE   FALSE FALSE
##  [54,] FALSE FALSE   FALSE FALSE
##  [55,] FALSE FALSE   FALSE FALSE
##  [56,] FALSE FALSE   FALSE FALSE
##  [57,] FALSE FALSE   FALSE FALSE
##  [58,] FALSE FALSE   FALSE FALSE
##  [59,] FALSE FALSE   FALSE FALSE
##  [60,] FALSE FALSE   FALSE FALSE
##  [61,] FALSE FALSE   FALSE FALSE
##  [62,] FALSE FALSE   FALSE FALSE
##  [63,] FALSE FALSE   FALSE FALSE
##  [64,] FALSE FALSE   FALSE FALSE
##  [65,] FALSE FALSE   FALSE FALSE
##  [66,] FALSE FALSE   FALSE FALSE
##  [67,] FALSE FALSE   FALSE FALSE
##  [68,] FALSE FALSE   FALSE FALSE
##  [69,] FALSE FALSE   FALSE FALSE
##  [70,] FALSE FALSE   FALSE FALSE
##  [71,] FALSE FALSE   FALSE FALSE
##  [72,] FALSE FALSE   FALSE FALSE
##  [73,] FALSE FALSE   FALSE FALSE
##  [74,] FALSE FALSE   FALSE FALSE
##  [75,] FALSE FALSE   FALSE FALSE
##  [76,] FALSE FALSE   FALSE FALSE
##  [77,] FALSE FALSE   FALSE FALSE
##  [78,] FALSE FALSE   FALSE FALSE
##  [79,] FALSE FALSE   FALSE FALSE
##  [80,] FALSE FALSE   FALSE FALSE
##  [81,] FALSE FALSE   FALSE FALSE
##  [82,] FALSE FALSE   FALSE FALSE
##  [83,] FALSE FALSE   FALSE FALSE
##  [84,] FALSE FALSE   FALSE FALSE
##  [85,] FALSE FALSE   FALSE FALSE
##  [86,] FALSE FALSE   FALSE FALSE
##  [87,] FALSE FALSE   FALSE FALSE
##  [88,] FALSE FALSE   FALSE FALSE
##  [89,] FALSE FALSE   FALSE FALSE
##  [90,] FALSE FALSE   FALSE FALSE
##  [91,] FALSE FALSE   FALSE FALSE
##  [92,] FALSE FALSE   FALSE FALSE
##  [93,] FALSE FALSE   FALSE FALSE
##  [94,] FALSE FALSE   FALSE FALSE
##  [95,] FALSE FALSE   FALSE FALSE
##  [96,] FALSE FALSE   FALSE FALSE
##  [97,] FALSE FALSE   FALSE FALSE
##  [98,] FALSE FALSE   FALSE FALSE
##  [99,] FALSE FALSE   FALSE FALSE
## [100,] FALSE FALSE   FALSE FALSE
## [101,] FALSE FALSE   FALSE FALSE
## [102,] FALSE FALSE   FALSE FALSE
## [103,] FALSE FALSE   FALSE FALSE
## [104,] FALSE FALSE   FALSE FALSE
## [105,] FALSE FALSE   FALSE FALSE
## [106,] FALSE FALSE   FALSE FALSE
## [107,] FALSE FALSE   FALSE FALSE
## [108,] FALSE FALSE   FALSE FALSE
## [109,] FALSE FALSE   FALSE FALSE
## [110,] FALSE FALSE   FALSE FALSE
## [111,] FALSE FALSE   FALSE FALSE
## [112,] FALSE FALSE   FALSE FALSE
## [113,] FALSE FALSE   FALSE FALSE
## [114,] FALSE FALSE   FALSE FALSE
## [115,] FALSE FALSE   FALSE FALSE
## [116,] FALSE FALSE   FALSE FALSE
## [117,] FALSE FALSE   FALSE FALSE
## [118,] FALSE FALSE   FALSE FALSE
## [119,] FALSE FALSE   FALSE FALSE
## [120,] FALSE FALSE   FALSE FALSE
## [121,] FALSE FALSE   FALSE FALSE
## [122,] FALSE FALSE   FALSE FALSE
## [123,] FALSE FALSE   FALSE FALSE
## [124,] FALSE FALSE   FALSE FALSE
## [125,] FALSE FALSE   FALSE FALSE
## [126,] FALSE FALSE   FALSE FALSE
## [127,] FALSE FALSE   FALSE FALSE
## [128,] FALSE FALSE   FALSE FALSE
## [129,] FALSE FALSE   FALSE FALSE
## [130,] FALSE FALSE   FALSE FALSE
## [131,] FALSE FALSE   FALSE FALSE
## [132,] FALSE FALSE   FALSE FALSE
## [133,] FALSE FALSE   FALSE FALSE
## [134,] FALSE FALSE   FALSE FALSE
## [135,] FALSE FALSE   FALSE FALSE
## [136,] FALSE FALSE   FALSE FALSE
## [137,] FALSE FALSE   FALSE FALSE
## [138,] FALSE FALSE   FALSE FALSE
## [139,] FALSE FALSE   FALSE FALSE
## [140,] FALSE FALSE   FALSE FALSE
## [141,] FALSE FALSE   FALSE FALSE
## [142,] FALSE FALSE   FALSE FALSE
## [143,] FALSE FALSE   FALSE FALSE
## [144,] FALSE FALSE   FALSE FALSE
## [145,] FALSE FALSE   FALSE FALSE
## [146,] FALSE FALSE   FALSE FALSE
## [147,] FALSE FALSE   FALSE FALSE
## [148,] FALSE FALSE   FALSE FALSE
## [149,] FALSE FALSE   FALSE FALSE
## [150,] FALSE FALSE   FALSE FALSE
## [151,] FALSE FALSE   FALSE FALSE
## [152,] FALSE FALSE   FALSE FALSE
## [153,] FALSE FALSE   FALSE FALSE
## [154,] FALSE FALSE   FALSE FALSE
## [155,] FALSE FALSE   FALSE FALSE
## [156,] FALSE FALSE   FALSE FALSE
## [157,] FALSE FALSE   FALSE FALSE
## [158,] FALSE FALSE   FALSE FALSE
## [159,] FALSE FALSE   FALSE FALSE
## [160,] FALSE FALSE   FALSE FALSE
## [161,] FALSE FALSE   FALSE FALSE
## [162,] FALSE FALSE   FALSE FALSE
## [163,] FALSE FALSE   FALSE FALSE
## [164,] FALSE FALSE   FALSE FALSE
## [165,] FALSE FALSE   FALSE FALSE
## [166,] FALSE FALSE   FALSE FALSE
## [167,] FALSE FALSE   FALSE FALSE
## [168,] FALSE FALSE   FALSE FALSE
## [169,] FALSE FALSE   FALSE FALSE
## [170,] FALSE FALSE   FALSE FALSE
## [171,] FALSE FALSE   FALSE FALSE
## [172,] FALSE FALSE   FALSE FALSE
## [173,] FALSE FALSE   FALSE FALSE
## [174,] FALSE FALSE   FALSE FALSE
## [175,] FALSE FALSE   FALSE FALSE
## [176,] FALSE FALSE   FALSE FALSE
## [177,] FALSE FALSE   FALSE FALSE
## [178,] FALSE FALSE   FALSE FALSE
## [179,] FALSE FALSE   FALSE FALSE
## [180,] FALSE FALSE   FALSE FALSE
## [181,] FALSE FALSE   FALSE FALSE
## [182,] FALSE FALSE   FALSE FALSE
## [183,] FALSE FALSE   FALSE FALSE
## [184,] FALSE FALSE   FALSE FALSE
## [185,] FALSE FALSE   FALSE FALSE
## [186,] FALSE FALSE   FALSE FALSE
## [187,] FALSE FALSE   FALSE FALSE
## [188,] FALSE FALSE   FALSE FALSE
## [189,] FALSE FALSE   FALSE FALSE
## [190,] FALSE FALSE   FALSE FALSE
## [191,] FALSE FALSE   FALSE FALSE
## [192,] FALSE FALSE   FALSE FALSE
## [193,] FALSE FALSE   FALSE FALSE
## [194,] FALSE FALSE   FALSE FALSE
## [195,] FALSE FALSE   FALSE FALSE
## [196,] FALSE FALSE   FALSE FALSE
## [197,] FALSE FALSE   FALSE FALSE
## [198,] FALSE FALSE   FALSE FALSE
## [199,] FALSE FALSE   FALSE FALSE
## [200,] FALSE FALSE   FALSE FALSE
## [201,] FALSE FALSE   FALSE FALSE
## [202,] FALSE FALSE   FALSE FALSE
## [203,] FALSE FALSE   FALSE FALSE
## [204,] FALSE FALSE   FALSE FALSE
## [205,] FALSE FALSE   FALSE FALSE
## [206,] FALSE FALSE   FALSE FALSE
## [207,] FALSE FALSE   FALSE FALSE
## [208,] FALSE FALSE   FALSE FALSE
## [209,] FALSE FALSE   FALSE FALSE
## [210,] FALSE FALSE   FALSE FALSE
## [211,] FALSE FALSE   FALSE FALSE
## [212,] FALSE FALSE   FALSE FALSE
## [213,] FALSE FALSE   FALSE FALSE
## [214,] FALSE FALSE   FALSE FALSE
## [215,] FALSE FALSE   FALSE FALSE
## [216,] FALSE FALSE   FALSE FALSE
## [217,] FALSE FALSE   FALSE FALSE
## [218,] FALSE FALSE   FALSE FALSE
## [219,] FALSE FALSE   FALSE FALSE
## [220,] FALSE FALSE   FALSE FALSE
## [221,] FALSE FALSE   FALSE FALSE
## [222,] FALSE FALSE   FALSE FALSE
## [223,] FALSE FALSE   FALSE FALSE
## [224,] FALSE FALSE   FALSE FALSE
## [225,] FALSE FALSE   FALSE FALSE
## [226,] FALSE FALSE   FALSE FALSE
## [227,] FALSE FALSE   FALSE FALSE
## [228,] FALSE FALSE   FALSE FALSE
## [229,] FALSE FALSE   FALSE FALSE
## [230,] FALSE FALSE   FALSE FALSE
## [231,] FALSE FALSE   FALSE FALSE
## [232,] FALSE FALSE   FALSE FALSE
## [233,] FALSE FALSE   FALSE FALSE
## [234,] FALSE FALSE   FALSE FALSE
## [235,] FALSE FALSE   FALSE FALSE
## [236,] FALSE FALSE   FALSE FALSE
## [237,] FALSE FALSE   FALSE FALSE
## [238,] FALSE FALSE   FALSE FALSE
## [239,] FALSE FALSE   FALSE FALSE
## [240,] FALSE FALSE   FALSE FALSE
## [241,] FALSE FALSE   FALSE FALSE
## [242,] FALSE FALSE   FALSE FALSE
## [243,] FALSE FALSE   FALSE FALSE
## [244,] FALSE FALSE   FALSE FALSE
## [245,] FALSE FALSE   FALSE FALSE
## [246,] FALSE FALSE   FALSE FALSE
## [247,] FALSE FALSE   FALSE FALSE
## [248,] FALSE FALSE   FALSE FALSE
## [249,] FALSE FALSE   FALSE FALSE
## [250,] FALSE FALSE   FALSE FALSE
## [251,] FALSE FALSE   FALSE FALSE
## [252,] FALSE FALSE   FALSE FALSE
## [253,] FALSE FALSE   FALSE FALSE
## [254,] FALSE FALSE   FALSE FALSE
## [255,] FALSE FALSE   FALSE FALSE
## [256,] FALSE FALSE   FALSE FALSE
## [257,] FALSE FALSE   FALSE FALSE
## [258,] FALSE FALSE   FALSE FALSE
## [259,] FALSE FALSE   FALSE FALSE
## [260,] FALSE FALSE   FALSE FALSE
## [261,] FALSE FALSE   FALSE FALSE
## [262,] FALSE FALSE   FALSE FALSE
## [263,] FALSE FALSE   FALSE FALSE
## [264,] FALSE FALSE   FALSE FALSE
## [265,] FALSE FALSE   FALSE FALSE
## [266,] FALSE FALSE   FALSE FALSE
## [267,] FALSE FALSE   FALSE FALSE
## [268,] FALSE FALSE   FALSE FALSE
## [269,] FALSE FALSE   FALSE FALSE
## [270,] FALSE FALSE   FALSE FALSE
## [271,] FALSE FALSE   FALSE FALSE
## [272,] FALSE FALSE   FALSE FALSE
## [273,] FALSE FALSE   FALSE FALSE
## [274,] FALSE FALSE   FALSE FALSE
## [275,] FALSE FALSE   FALSE FALSE
## [276,] FALSE FALSE   FALSE FALSE
## [277,] FALSE FALSE   FALSE FALSE
## [278,] FALSE FALSE   FALSE FALSE
## [279,] FALSE FALSE   FALSE FALSE
## [280,] FALSE FALSE   FALSE FALSE
## [281,] FALSE FALSE   FALSE FALSE
## [282,] FALSE FALSE   FALSE FALSE
## [283,] FALSE FALSE   FALSE FALSE
## [284,] FALSE FALSE   FALSE FALSE
## [285,] FALSE FALSE   FALSE FALSE
## [286,] FALSE FALSE   FALSE FALSE
## [287,] FALSE FALSE   FALSE FALSE
## [288,] FALSE FALSE   FALSE FALSE
## [289,] FALSE FALSE   FALSE FALSE
## [290,] FALSE FALSE   FALSE FALSE
## [291,] FALSE FALSE   FALSE FALSE
## [292,] FALSE FALSE   FALSE FALSE
## [293,] FALSE FALSE   FALSE FALSE
## [294,] FALSE FALSE   FALSE FALSE
## [295,] FALSE FALSE   FALSE FALSE
## [296,] FALSE FALSE   FALSE FALSE
## [297,] FALSE FALSE   FALSE FALSE
## [298,] FALSE FALSE   FALSE FALSE
## [299,] FALSE FALSE   FALSE FALSE
## [300,] FALSE FALSE   FALSE FALSE
## [301,] FALSE FALSE   FALSE FALSE
## [302,] FALSE FALSE   FALSE FALSE
## [303,] FALSE FALSE   FALSE FALSE
## [304,] FALSE FALSE   FALSE FALSE
## [305,] FALSE FALSE   FALSE FALSE
## [306,] FALSE FALSE   FALSE FALSE
## [307,] FALSE FALSE   FALSE FALSE
## [308,] FALSE FALSE   FALSE FALSE
## [309,] FALSE FALSE   FALSE FALSE
## [310,] FALSE FALSE   FALSE FALSE
## [311,] FALSE FALSE   FALSE FALSE
## [312,] FALSE FALSE   FALSE FALSE
## [313,] FALSE FALSE   FALSE FALSE
## [314,] FALSE FALSE   FALSE FALSE
## [315,] FALSE FALSE   FALSE FALSE
## [316,] FALSE FALSE   FALSE FALSE
## [317,] FALSE FALSE   FALSE FALSE
## [318,] FALSE FALSE   FALSE FALSE
## [319,] FALSE FALSE   FALSE FALSE
## [320,] FALSE FALSE   FALSE FALSE
## [321,] FALSE FALSE   FALSE FALSE
## [322,] FALSE FALSE   FALSE FALSE
## [323,] FALSE FALSE   FALSE FALSE
## [324,] FALSE FALSE   FALSE FALSE
## [325,] FALSE FALSE   FALSE FALSE
## [326,] FALSE FALSE   FALSE FALSE
## [327,] FALSE FALSE   FALSE FALSE
## [328,] FALSE FALSE   FALSE FALSE
## [329,] FALSE FALSE   FALSE FALSE
## [330,] FALSE FALSE   FALSE FALSE
## [331,] FALSE FALSE   FALSE FALSE
## [332,] FALSE FALSE   FALSE FALSE
## [333,] FALSE FALSE   FALSE FALSE
## [334,] FALSE FALSE   FALSE FALSE
## [335,] FALSE FALSE   FALSE FALSE
## [336,] FALSE FALSE   FALSE FALSE
## [337,] FALSE FALSE   FALSE FALSE
## [338,] FALSE FALSE   FALSE FALSE
## [339,] FALSE FALSE   FALSE FALSE
## [340,] FALSE FALSE   FALSE FALSE
## [341,] FALSE FALSE   FALSE FALSE
## [342,] FALSE FALSE   FALSE FALSE
## [343,] FALSE FALSE   FALSE FALSE
## [344,] FALSE FALSE   FALSE FALSE
## [345,] FALSE FALSE   FALSE FALSE
## [346,] FALSE FALSE   FALSE FALSE
## [347,] FALSE FALSE   FALSE FALSE
## [348,] FALSE FALSE   FALSE FALSE
## [349,] FALSE FALSE   FALSE FALSE
## [350,] FALSE FALSE   FALSE FALSE
## [351,] FALSE FALSE   FALSE FALSE
## [352,] FALSE FALSE   FALSE FALSE
## [353,] FALSE FALSE   FALSE FALSE
## [354,] FALSE FALSE   FALSE FALSE
## [355,] FALSE FALSE   FALSE FALSE
## [356,] FALSE FALSE   FALSE FALSE
## [357,] FALSE FALSE   FALSE FALSE
## [358,] FALSE FALSE   FALSE FALSE
## [359,] FALSE FALSE   FALSE FALSE
## [360,] FALSE FALSE   FALSE FALSE
## [361,] FALSE FALSE   FALSE FALSE
## [362,] FALSE FALSE   FALSE FALSE
## [363,] FALSE FALSE   FALSE FALSE
## [364,] FALSE FALSE   FALSE FALSE
## [365,] FALSE FALSE   FALSE FALSE
## [366,] FALSE FALSE   FALSE FALSE
## [367,] FALSE FALSE   FALSE FALSE
## [368,] FALSE FALSE   FALSE FALSE
## [369,] FALSE FALSE   FALSE FALSE
## [370,] FALSE FALSE   FALSE FALSE
## [371,] FALSE FALSE   FALSE FALSE
## [372,] FALSE FALSE   FALSE FALSE
## [373,] FALSE FALSE   FALSE FALSE
## [374,] FALSE FALSE   FALSE FALSE
## [375,] FALSE FALSE   FALSE FALSE
## [376,] FALSE FALSE   FALSE FALSE
## [377,] FALSE FALSE   FALSE FALSE
## [378,] FALSE FALSE   FALSE FALSE
## [379,] FALSE FALSE   FALSE FALSE
## [380,] FALSE FALSE   FALSE FALSE
## [381,] FALSE FALSE   FALSE FALSE
## [382,] FALSE FALSE   FALSE FALSE
## [383,] FALSE FALSE   FALSE FALSE
## [384,] FALSE FALSE   FALSE FALSE
## [385,] FALSE FALSE   FALSE FALSE
## [386,] FALSE FALSE   FALSE FALSE
## [387,] FALSE FALSE   FALSE FALSE
## [388,] FALSE FALSE   FALSE FALSE
## [389,] FALSE FALSE   FALSE FALSE
## [390,] FALSE FALSE   FALSE FALSE
## [391,] FALSE FALSE   FALSE FALSE
## [392,] FALSE FALSE   FALSE FALSE
## [393,] FALSE FALSE   FALSE FALSE
## [394,] FALSE FALSE   FALSE FALSE
## [395,] FALSE FALSE   FALSE FALSE
## [396,] FALSE FALSE   FALSE FALSE
## [397,] FALSE FALSE   FALSE FALSE
## [398,] FALSE FALSE   FALSE FALSE
## [399,] FALSE FALSE   FALSE FALSE
## [400,] FALSE FALSE   FALSE FALSE
## [401,] FALSE FALSE   FALSE FALSE
## [402,] FALSE FALSE   FALSE FALSE
## [403,] FALSE FALSE   FALSE FALSE
## [404,] FALSE FALSE   FALSE FALSE
## [405,] FALSE FALSE   FALSE FALSE
## [406,] FALSE FALSE   FALSE FALSE
## [407,] FALSE FALSE   FALSE FALSE
## [408,] FALSE FALSE   FALSE FALSE
## [409,] FALSE FALSE   FALSE FALSE
## [410,] FALSE FALSE   FALSE FALSE
## [411,] FALSE FALSE   FALSE FALSE
## [412,] FALSE FALSE   FALSE FALSE
## [413,] FALSE FALSE   FALSE FALSE
## [414,] FALSE FALSE   FALSE FALSE
## [415,] FALSE FALSE   FALSE FALSE
## [416,] FALSE FALSE   FALSE FALSE
## [417,] FALSE FALSE   FALSE FALSE
## [418,] FALSE FALSE   FALSE FALSE
## [419,] FALSE FALSE   FALSE FALSE
## [420,] FALSE FALSE   FALSE FALSE
## [421,] FALSE FALSE   FALSE FALSE
## [422,] FALSE FALSE   FALSE FALSE
## [423,] FALSE FALSE   FALSE FALSE
## [424,] FALSE FALSE   FALSE FALSE
## [425,] FALSE FALSE   FALSE FALSE
## [426,] FALSE FALSE   FALSE FALSE
## [427,] FALSE FALSE   FALSE FALSE
## [428,] FALSE FALSE   FALSE FALSE
## [429,] FALSE FALSE   FALSE FALSE
## [430,] FALSE FALSE   FALSE FALSE
## [431,] FALSE FALSE   FALSE FALSE
## [432,] FALSE FALSE   FALSE FALSE
## [433,] FALSE FALSE   FALSE FALSE
## [434,] FALSE FALSE   FALSE FALSE
## [435,] FALSE FALSE   FALSE FALSE
## [436,] FALSE FALSE   FALSE FALSE
## [437,] FALSE FALSE   FALSE FALSE
## [438,] FALSE FALSE   FALSE FALSE
## [439,] FALSE FALSE   FALSE FALSE
## [440,] FALSE FALSE   FALSE FALSE
## [441,] FALSE FALSE   FALSE FALSE
## [442,] FALSE FALSE   FALSE FALSE
## [443,] FALSE FALSE   FALSE FALSE
## [444,] FALSE FALSE   FALSE FALSE
## [445,] FALSE FALSE   FALSE FALSE
## [446,] FALSE FALSE   FALSE FALSE
## [447,] FALSE FALSE   FALSE FALSE
## [448,] FALSE FALSE   FALSE FALSE
## [449,] FALSE FALSE   FALSE FALSE
## [450,] FALSE FALSE   FALSE FALSE
## [451,] FALSE FALSE   FALSE FALSE
## [452,] FALSE FALSE   FALSE FALSE
## [453,] FALSE FALSE   FALSE FALSE
## [454,] FALSE FALSE   FALSE FALSE
## [455,] FALSE FALSE   FALSE FALSE
## [456,] FALSE FALSE   FALSE FALSE
## [457,] FALSE FALSE   FALSE FALSE
## [458,] FALSE FALSE   FALSE FALSE
## [459,] FALSE FALSE   FALSE FALSE
## [460,] FALSE FALSE   FALSE FALSE
## [461,] FALSE FALSE   FALSE FALSE
## [462,] FALSE FALSE   FALSE FALSE
## [463,] FALSE FALSE   FALSE FALSE
## [464,] FALSE FALSE   FALSE FALSE
## [465,] FALSE FALSE   FALSE FALSE
## [466,] FALSE FALSE   FALSE FALSE
## [467,] FALSE FALSE   FALSE FALSE
## [468,] FALSE FALSE   FALSE FALSE
## [469,] FALSE FALSE   FALSE FALSE
## [470,] FALSE FALSE   FALSE FALSE
## [471,] FALSE FALSE   FALSE FALSE
## [472,] FALSE FALSE   FALSE FALSE
## [473,] FALSE FALSE   FALSE FALSE
## [474,] FALSE FALSE   FALSE FALSE
## [475,] FALSE FALSE   FALSE FALSE
## [476,] FALSE FALSE   FALSE FALSE
## [477,] FALSE FALSE   FALSE FALSE
## [478,] FALSE FALSE   FALSE FALSE
## [479,] FALSE FALSE   FALSE FALSE
## [480,] FALSE FALSE   FALSE FALSE
## [481,] FALSE FALSE   FALSE FALSE
## [482,] FALSE FALSE   FALSE FALSE
## [483,] FALSE FALSE   FALSE FALSE
## [484,] FALSE FALSE   FALSE FALSE
## [485,] FALSE FALSE   FALSE FALSE
## [486,] FALSE FALSE   FALSE FALSE
## [487,] FALSE FALSE   FALSE FALSE
## [488,] FALSE FALSE   FALSE FALSE
## [489,] FALSE FALSE   FALSE FALSE
summary(houseprice)
##        RM            LSTAT          PTRATIO           MEDV        
##  Min.   :3.561   Min.   : 1.98   Min.   :12.60   Min.   : 105000  
##  1st Qu.:5.880   1st Qu.: 7.37   1st Qu.:17.40   1st Qu.: 350700  
##  Median :6.185   Median :11.69   Median :19.10   Median : 438900  
##  Mean   :6.240   Mean   :12.94   Mean   :18.52   Mean   : 454343  
##  3rd Qu.:6.575   3rd Qu.:17.12   3rd Qu.:20.20   3rd Qu.: 518700  
##  Max.   :8.398   Max.   :37.97   Max.   :22.00   Max.   :1024800
attach(houseprice)
plot1<-qplot(MEDV, RM)
plot2<-qplot(MEDV, LSTAT)
plot3<-qplot(MEDV, PTRATIO)

library(gridExtra)
grid.arrange(plot1,plot2,plot3, nrow = 1)

##Observation * All attributes are numeric in nature and none of the columns have NULL or NA values * The plot between Rooms and Mean value of house price show a positive coorelation, indicating an increase in price as the no of rooms increase The plot between ratio of home owners with low income and the house price is negatively correlated, implying that low income areas will not have expensive residency complexes The PTRATIO and MEDV have a negative correlation, indicating house prices will be higher in areas with a low student teacher ratio as students will get more attention

Run Regression Model

pricingmodel<-lm(MEDV~RM+LSTAT+PTRATIO, data = houseprice)
summary(pricingmodel)
## 
## Call:
## lm(formula = MEDV ~ RM + LSTAT + PTRATIO, data = houseprice)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -231330  -55228   -8137   41788  326444 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 415464.4    68845.7   6.035 3.17e-09 ***
## RM           86565.2     7888.9  10.973  < 2e-16 ***
## LSTAT       -10849.3      732.1 -14.819  < 2e-16 ***
## PTRATIO     -19492.1     2039.0  -9.559  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 88130 on 485 degrees of freedom
## Multiple R-squared:  0.7176, Adjusted R-squared:  0.7159 
## F-statistic: 410.9 on 3 and 485 DF,  p-value: < 2.2e-16
houseAIC<-AIC(pricingmodel)
houseAIC
## [1] 12529.78
houseVIF<-vif(pricingmodel)
houseVIF
##       RM    LSTAT  PTRATIO 
## 1.619920 1.689112 1.164402

Observation

We find, that Multiple R-squared is 71.76% and value of Adjusted R-square is 71.59% This means about 72% of variation in target variable (MEDV) can be predicted by predictor variables, indicating a erasonably good fit. The Variable inflation factor values for all the predictor variables are under 2 , indicating very less multicolinearity. Hence this is a good model

Conclusion

egression equation is MEDV = 415464.4 + 86565.2 * RM - 10849.3 * LSTAT - 19492.1 * PTRATIO