下述例題乃為當資料單位改變時,相關係數(correlation coefficient),回歸係數(regression coefficient)會有何影響
x <- c(173,164,180,152,170,168,162,175,170,158)
y <- c(66,52,78,45,62,63,51,72,60,48)
x1 <- 0.347*x
y1 <- y/0.454
data <- data.frame(x,y,x1,y1)
data
## x y x1 y1
## 1 173 66 60.031 145.37445
## 2 164 52 56.908 114.53744
## 3 180 78 62.460 171.80617
## 4 152 45 52.744 99.11894
## 5 170 62 58.990 136.56388
## 6 168 63 58.296 138.76652
## 7 162 51 56.214 112.33480
## 8 175 72 60.725 158.59031
## 9 170 60 58.990 132.15859
## 10 158 48 54.826 105.72687
將資料做敘述統計
## Mean S.d
## x 167.2000 8.350649
## y 59.7000 10.698390
## x1 58.0184 2.897675
## y1 131.4978 23.564736
比較兩筆資料跑出來的回歸模型
lm.1 <- lm(y~x,data = data)
lm.2 <- lm(y1~x1,data = data)
summary(lm.1)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -147.461759 19.2856388 -7.646195 6.038456e-05
## x 1.239006 0.1152155 10.753814 4.921301e-06
summary(lm.2)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -324.805637 42.4793806 -7.646195 6.038456e-05
## x1 7.864806 0.7313504 10.753814 4.921301e-06
anova(lm.1)
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 963.45 963.45 115.64 4.921e-06 ***
## Residuals 8 66.65 8.33
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm.2)
## Analysis of Variance Table
##
## Response: y1
## Df Sum Sq Mean Sq F value Pr(>F)
## x1 1 4674.3 4674.3 115.64 4.921e-06 ***
## Residuals 8 323.4 40.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
由上述討論可以發現 1.單位改變後兩變數的判定係數()不變