February 8, 2018

1. Load data

I am going to use the mtcars dataset.

cars<-as.data.frame(mtcars)

2. Explore data

Explore the mean values and range of each variable.

kable(cars[1:5,], caption = "Table 1. Overview of the mtcars Dataset")
Table 1. Overview of the mtcars Dataset
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
kable(summary(cars), caption = "Table 2. Summary of the mtcars Dataset")
Table 2. Summary of the mtcars Dataset
mpg cyl disp hp drat wt qsec vs am gear carb
Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0 Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000 Min. :0.0000 Min. :3.000 Min. :1.000
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
Median :19.20 Median :6.000 Median :196.3 Median :123.0 Median :3.695 Median :3.325 Median :17.71 Median :0.0000 Median :0.0000 Median :4.000 Median :2.000
Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7 Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375 Mean :0.4062 Mean :3.688 Mean :2.812
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0 Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000 Max. :1.0000 Max. :5.000 Max. :8.000

3. Plot data

plot_ly(mtcars, x = ~wt, y = ~mpg, type = "scatter",
        mode = "markers", color = ~as.factor(cyl))