sd_weight <- sqrt(40000)
mean_weight <- 1300
print(round(pnorm(979,mean=mean_weight,sd = sd_weight, lower.tail = FALSE),4))
## [1] 0.9458
sd_monitors <- sqrt(1960000)
mean_monitors <- 11000
print(round(pnorm(8340,mean=mean_monitors,sd = sd_monitors,lower.tail = FALSE),4))
## [1] 0.9713
income_lt83 <- pnorm(83, mean = 80, sd = 3, lower.tail = TRUE)
income_gt85 <- pnorm(85, mean = 80, sd = 3, lower.tail = TRUE)
round(income_gt85 - income_lt83, 4)
## [1] 0.1109
gre_sd<- 123
gre_mean <- 456
round(qnorm(0.86,gre_mean,gre_sd),0)
## [1] 589
sd <- 0.06
mean <- 6.13
lower_bound <- 0.07
upper_bound <- 0.93
print(paste0("top limit ",round(qnorm(upper_bound, mean, sd),2)))
## [1] "top limit 6.22"
print(paste0("bottom limit",round(qnorm(lower_bound, mean, sd),2)))
## [1] "bottom limit6.04"
mean_score <- 78.8
sd_score <- 9.8
lower_bound_score <- 0.2
upper_bound_score <- 0.55
print(paste0("top limit ",round(qnorm(upper_bound_score, mean_score, sd_score),0)))
## [1] "top limit 80"
print(paste0("bottom limit ",round(qnorm(lower_bound_score, mean_score, sd_score),0)))
## [1] "bottom limit 71"
mean_act_score <- 21.2
sd_act_score <- 5.4
lower_bound_act_score <- 1-.45
print(round(qnorm(lower_bound_act_score, mean = 21.2, sd = 5.2), 1))
## [1] 21.9
less_than_11 <- 10
round(pbinom(less_than_11, size = 151,prob =.09), 4)
## [1] 0.192
standard_err_mean_09 <- 7/sqrt(147)
print(round(pnorm(48.83, mean = 48, sd = standard_err_mean_09, lower.tail = FALSE),4))
## [1] 0.0753
standard_err_mean_qc <- 10/sqrt(68)
print(round(pnorm(93.54, mean = 91, sd = standard_err_mean_qc, lower.tail = FALSE),4))
## [1] 0.0181
standard_err_mean_11 <- sqrt(.07 * (1-.07)/540)
# probability of no shows between 4% to 10%,
Tenth_Percentile <- pnorm(.10, mean = .07, sd = standard_err_mean_11, lower.tail=TRUE)
Fourth_Percentile <- pnorm(.04, mean = .07, sd = standard_err_mean_11, lower.tail=TRUE)
diff_11 <- Tenth_Percentile-Fourth_Percentile
print(round(diff_11,4))
## [1] 0.9937
standard_err_mean_11 <- sqrt(.23 * (1-.23)/602)
# probability of no shows between 19% to 27%,
twntyseven_Percentile <- pnorm(.27, mean = .23, sd = standard_err_mean_11, lower.tail=TRUE)
ninteen_Percentile <- pnorm(.19, mean = .23, sd = standard_err_mean_11, lower.tail=TRUE)
diff_12 <- twntyseven_Percentile-ninteen_Percentile
print(round(diff_12,4))
## [1] 0.9803
xbar <- 3.9
sigma <- .8
sample_spac_n <- 208
std_err_rsrch = sigma/sqrt(sample_spac_n)
t <- qt((1 - .8)/2, sample_spac_n - 1)
#std_err <- sem(sample_spac_n, sigma)
c_interval_1 <- round((xbar + t * std_err_rsrch),1)
c_interval_2 <- round((xbar - t * std_err_rsrch),1)
print(paste0("lower limit ",c_interval_1))
## [1] "lower limit 3.8"
print(paste0("upper limit ",c_interval_2))
## [1] "upper limit 4"
xbar_14 <- 16.6
sigma_14 <- 11
sample_spac_14 <- 7242
std_err_14 = sigma_14/sqrt(sample_spac_14)
t <- qt((1-.98)/2, sample_spac_14 -1)
#std_err <- sem(sample_spac_n, sigma)
ci_interval_1 <- round((xbar_14 + t * std_err_14),1)
ci_interval_2 <- round((xbar_14 - t * std_err_14),1)
print(paste0("lower limit ",ci_interval_1))
## [1] "lower limit 16.3"
print(paste0("upper limit ",ci_interval_2))
## [1] "upper limit 16.9"
Step 1. Choose the picture which best describes the problem.
pic15
Step 2. Write your answer below.
print(qt(0.05,df=26))
## [1] -1.705618
Step 1. Calculate the sample mean for the given sample data. (Round answer to 2 decimal places)
gas_records <- c(383.6, 347.1, 371.9, 347.6, 325.8, 337)
mean_16 <- sum(gas_records)/6
print(round(mean_16,2))
## [1] 352.17
Step 2. Calculate the sample standard deviation for the given sample data. (Round answer to 2 decimal places)
sigma_16 <- sqrt(var(gas_records))
print(round(sigma_16,2))
## [1] 21.68
Step 3. Find the critical value that should be used in constructing the confidence interval. (Round answer to 3 decimal places)
n = length(gas_records)
critical_value <- qt(.10/2, (n - 1), lower.tail = FALSE)
print(round(critical_value,3))
## [1] 2.015
Step 4. Construct the 90% confidence interval. (Round answer to 2 decimal places)
Upper.Limit_16 <- mean_16 + critical_value * sigma_16 / sqrt(6)
Lower.Limit_16 <- mean_16 - critical_value * sigma_16 / sqrt(6)
print(paste0("Upper Limit: ", round(Upper.Limit_16,2)))
## [1] "Upper Limit: 370"
print(paste0("Lower Limit: ", round(Lower.Limit_16,2)))
## [1] "Lower Limit: 334.34"
Step 1. Find the critical value that should be used in constructing the confidence interval. (Round answer to 3 decimal places)
sample_17 <-16
xbar_17 <-46.4
sigma_17 <-2.45
critical_value_17 <-qt((1-.8)/2,sample_17-1,lower.tail = FALSE)
print(round(critical_value_17,3))
## [1] 1.341
Step 2. Construct the 80% confidence interval. (Round answer to 1 decimal place)
Upper.Limit_17 <- xbar_17 + critical_value_17 * sigma_17 / sqrt(16)
Lower.Limit_17 <- xbar_17 - critical_value_17 * sigma_17 / sqrt(16)
print(paste0("Upper Limit: ", round(Upper.Limit_17,1)))
## [1] "Upper Limit: 47.2"
print(paste0("lower Limit: ", round(Lower.Limit_17,1)))
## [1] "lower Limit: 45.6"
zvalue_18 = qnorm(1-(1-.99)/2)
n_18 = ceiling(((zvalue_18*1.9)/0.13)^2)
print(n_18)
## [1] 1418
zvalue_19 = qnorm(1-(1-.95)/2)
n_19 = ceiling(((zvalue_19*1.9)/0.19)^2)
print(n_19)
## [1] 385
Step 1. Suppose a sample of 2089 tenth graders is drawn. Of the students sampled, 1734 read above the eighth grade level. Using the data, estimate the proportion of tenth graders reading at or below the eighth grade level. (Write your answer as a fraction or a decimal number rounded to 3 decimal places)
n_20 = 2089
sample_20 = 2089 - 1734
read_below_prop = round(sample_20 / n_20,3)
print(read_below_prop)
## [1] 0.17
Step 2. Suppose a sample of 2089 tenth graders is drawn. Of the students sampled, 1734 read above the eighth grade level. Using the data, construct the 98% confidence interval for the population proportion of tenth graders reading at or below the eighth grade level. (Round your answers to 3 decimal places)
zvalue_20 = qnorm(1-(1-.98)/2)
print(zvalue_20)
## [1] 2.326348
Margin.Of.Error <- zvalue_20 * sqrt((.17)*(1-.17)/n_20)
print(paste0("Upper limit: ", round(.17 + Margin.Of.Error,3)))
## [1] "Upper limit: 0.189"
print(paste0("Lower limit: ", round(.17 - Margin.Of.Error,3)))
## [1] "Lower limit: 0.151"
Step 1. Suppose a sample of 474 tankers is drawn. Of these ships, 156 had spills. Using the data, estimate the proportion of oil tankers that had spills. (Write your answer as a fraction or a decimal number rounded to 3 decimal places)
n_21 = 474
sample_21 = 156
spill_ratio = round(sample_21 / n_21,3)
print(spill_ratio)
## [1] 0.329
Step 2. Suppose a sample of 474 tankers is drawn. Of these ships, 156 had spills. Using the data, construct the 95% confidence interval for the population proportion of oil tankers that have spills each month. (Round your answers to 3 decimal places)
zvalue_21 = qnorm(1-(1-.95)/2)
print(zvalue_21)
## [1] 1.959964
Margin.Of.Error_21 <- zvalue_21 * sqrt((spill_ratio)*(1-spill_ratio)/n_21)
print(paste0("Upper limit: ", round(spill_ratio + Margin.Of.Error_21,3)))
## [1] "Upper limit: 0.371"
print(paste0("lower limit: ", round(spill_ratio - Margin.Of.Error_21,3)))
## [1] "lower limit: 0.287"