Recipe 5: Blocked Designs with Mutiple Explanatory and Nuisance Factors

This is an R Markdown document. Markdown is a simple formatting syntax for authoring web pages (click the MD toolbar button for help on Markdown).

When you click the Knit HTML button a web page will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Recipes for the Design of Experiments: Recipe Outline

as of August 28, 2014, superceding the version of August 24. Always use the most recent version.

Storm Analysis

Caroline Hsia

Rensselaer Polytechnic Institute

October 23, 2014 V1

1. Setting

System under test

This study takes a look at storm data from National Hurricane Center. It tracks different tropical cyclones through the Atlantic Ocean, Carribean Sea, and Gulf of Mexico from 1995 to 2005. It includes various metadata about each storm including name, year, month, date, hour, latitude, longitude, type, air pressure, maximum wind speeds, and day of the hurricane season. This specific recipe will be looking into the Year and type of storms.

remove(list=ls())
install.packages("nasaweather", repos='http://cran.us.r-project.org')
## package 'nasaweather' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\Caroline\AppData\Local\Temp\Rtmp4CPkYb\downloaded_packages
require(nasaweather)
## Loading required package: nasaweather
library("nasaweather", lib.loc="~/R/win-library/3.0/")
x<-storms
storm = x[-1666,]
storm = storm[-1604,]
head(x)
##      name year month day hour  lat  long pressure wind                type
## 1 Allison 1995     6   3    0 17.4 -84.3     1005   30 Tropical Depression
## 2 Allison 1995     6   3    6 18.3 -84.9     1004   30 Tropical Depression
## 3 Allison 1995     6   3   12 19.3 -85.7     1003   35      Tropical Storm
## 4 Allison 1995     6   3   18 20.6 -85.8     1001   40      Tropical Storm
## 5 Allison 1995     6   4    0 22.0 -86.0      997   50      Tropical Storm
## 6 Allison 1995     6   4    6 23.3 -86.3      995   60      Tropical Storm
##   seasday
## 1       3
## 2       3
## 3       3
## 4       3
## 5       4
## 6       4
str(x)
## Classes 'tbl_df', 'tbl' and 'data.frame':    2747 obs. of  11 variables:
##  $ name    : chr  "Allison" "Allison" "Allison" "Allison" ...
##  $ year    : int  1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 ...
##  $ month   : int  6 6 6 6 6 6 6 6 6 6 ...
##  $ day     : int  3 3 3 3 4 4 4 4 5 5 ...
##  $ hour    : int  0 6 12 18 0 6 12 18 0 6 ...
##  $ lat     : num  17.4 18.3 19.3 20.6 22 23.3 24.7 26.2 27.6 28.5 ...
##  $ long    : num  -84.3 -84.9 -85.7 -85.8 -86 -86.3 -86.2 -86.2 -86.1 -85.6 ...
##  $ pressure: int  1005 1004 1003 1001 997 995 987 988 988 990 ...
##  $ wind    : int  30 30 35 40 50 60 65 65 65 60 ...
##  $ type    : chr  "Tropical Depression" "Tropical Depression" "Tropical Storm" "Tropical Storm" ...
##  $ seasday : int  3 3 3 3 4 4 4 4 5 5 ...

Factors and Levels

There are five factors in this dataset: year, month, day, hour, and type. The factors that were used in this analysis was Storm Type and year. The levels for year were 1995 to 2000. The levels for Day were 1 - 31. The levels for hour were 0, 6, 12, or 18. The levels for month were 6 - 12. The levels for type were: extratropical, hurricane, tropic storm, and tropical depression.

head(x)
##      name year month day hour  lat  long pressure wind                type
## 1 Allison 1995     6   3    0 17.4 -84.3     1005   30 Tropical Depression
## 2 Allison 1995     6   3    6 18.3 -84.9     1004   30 Tropical Depression
## 3 Allison 1995     6   3   12 19.3 -85.7     1003   35      Tropical Storm
## 4 Allison 1995     6   3   18 20.6 -85.8     1001   40      Tropical Storm
## 5 Allison 1995     6   4    0 22.0 -86.0      997   50      Tropical Storm
## 6 Allison 1995     6   4    6 23.3 -86.3      995   60      Tropical Storm
##   seasday
## 1       3
## 2       3
## 3       3
## 4       3
## 5       4
## 6       4
tail(x)
##        name year month day hour  lat  long pressure wind           type
## 2742 Nadine 2000    10  21    6 33.3 -53.5     1000   50 Tropical Storm
## 2743 Nadine 2000    10  21   12 34.1 -52.3     1000   50 Tropical Storm
## 2744 Nadine 2000    10  21   18 34.8 -51.3     1000   45 Tropical Storm
## 2745 Nadine 2000    10  22    0 35.7 -50.5     1004   40  Extratropical
## 2746 Nadine 2000    10  22    6 37.0 -49.0     1005   40  Extratropical
## 2747 Nadine 2000    10  22   12 39.0 -47.0     1005   35  Extratropical
##      seasday
## 2742     143
## 2743     143
## 2744     143
## 2745     144
## 2746     144
## 2747     144
summary(x)
##      name                year          month           day    
##  Length:2747        Min.   :1995   Min.   : 6.0   Min.   : 1  
##  Class :character   1st Qu.:1995   1st Qu.: 8.0   1st Qu.: 9  
##  Mode  :character   Median :1997   Median : 9.0   Median :18  
##                     Mean   :1997   Mean   : 8.8   Mean   :17  
##                     3rd Qu.:1999   3rd Qu.:10.0   3rd Qu.:25  
##                     Max.   :2000   Max.   :12.0   Max.   :31  
##       hour            lat            long           pressure   
##  Min.   : 0.00   Min.   : 8.3   Min.   :-107.3   Min.   : 905  
##  1st Qu.: 3.50   1st Qu.:17.2   1st Qu.: -77.6   1st Qu.: 980  
##  Median :12.00   Median :25.0   Median : -60.9   Median : 995  
##  Mean   : 9.06   Mean   :26.7   Mean   : -60.9   Mean   : 990  
##  3rd Qu.:18.00   3rd Qu.:33.9   3rd Qu.: -45.8   3rd Qu.:1004  
##  Max.   :18.00   Max.   :70.7   Max.   :   1.0   Max.   :1019  
##       wind           type              seasday   
##  Min.   : 15.0   Length:2747        Min.   :  3  
##  1st Qu.: 35.0   Class :character   1st Qu.: 84  
##  Median : 50.0   Mode  :character   Median :103  
##  Mean   : 54.7                      Mean   :103  
##  3rd Qu.: 70.0                      3rd Qu.:125  
##  Max.   :155.0                      Max.   :185
#Set all of the factors in the dataset to as.factor
storm$name = as.factor(storm$name)
storm$year = as.factor(storm$year)
storm$month = as.factor(storm$month)
storm$day = as.factor(storm$day)
storm$hour = as.factor(storm$hour)
storm$type = as.factor(storm$type)

Continuous variables (if any)

The continuous variables in this dataset are longitude, latitude, air pressure, and wind speed.

Response variables

The response variables in this dataset are air pressure and wind speed.

The Data: How is it organized and what does it look like?

The data from ‘storms’ describes data about the tropical cyclones that are tracked through the Atlantic Ocean, Carribean Sea, and Gulf of Mexico from 1995 to 2005. The information about storms include various metadata about each storm including name, year, month, date, hour, latitude, longitude, type, air pressure, maximum wind speeds, and day of the hurricane season. There are four levels to type factor which includes Extratropical, Tropical Depression, Hurricane, and Tropical Storm.

Randomization

This data originated from the National Hurricane Center’s archive of Tropical Cyclone reports, handscraped from track tables of individual tropical cyclone reports. We can assume that this data was collected using proper randomization techniques.

2. (Experimental) Design

How will the experiment be organized and conducted to test the hypothesis?

This data was publically available for anyone to use and perform analysis on. In this analysis, a multifactor, multilevel experiment blocking on two factors will be performed. Multiple ANOVA tests will be conducted in order to determine the relationship between wind pressure and storm month, day, and hour. The storm year and type will be the blocking factor. ANOVA tests will be performed between each of the factors and response to compare the means of the factor levels.

The null hypothesis that will be tested is:

The variance in storm month, day, and hour of a storm has no significant impact on the variance of its storm wind pressure.

This makes the alternate hypothesis:

The variance in storm month, day, and hour of a storm has a significant effect on the variance storm wind pressure.

What is the rationale for this design?

The rationale for the collection of data was just for the National Hurricane Center to gather information on the tropical cyclones that travel through the Atlantic Ocean, Carribean Sea, and Gulf of Mexico from 1995 to 2005. The analysis performed for this dataset involved a multifactor, multilevel design. An ANOVA test was conducted in order to determine the variation between the level means.

Randomize: What is the Randomization Scheme?

This data was collected with no intention, just for data collection.

Replicate: Are there replicates and/or repeated measures?

No, there were no replicates. Repeated measures included taking measurements for the same storm at different points of time.

Block: Did you use blocking in the design?

The original dataset was organized without experimental groups, with measurements recorded based on certain variables. The blocking factors used in this recipe were storm year and storm type.

3. (Statistical) Analysis

(Exploratory Data Analysis) Graphics and descriptive summary

#Here we will just look at the boxplots of the blocking factors.
boxplot(wind~year, data = storm, xlab = "Year", ylab = "Wind Pressure")

plot of chunk unnamed-chunk-4

boxplot(wind~type, data = storm, xlab = "Type", ylab = "Wind Pressure")

plot of chunk unnamed-chunk-4 From these boxplots, we can see the variability between the data in these categories. It is clear that the variability between the year is less than the type, but they both make good candidates for blocking in our analysis.

#Here we will examine the histogram of the response variable.

par(mfrow=c(1,1))
hist(storm$wind, xlim = c(0,180))

plot of chunk unnamed-chunk-5

#Here we will just look at the boxplots of the 3 factors.
boxplot(wind~month, data = storm, xlab = "Month", ylab = "Wind Pressure")

plot of chunk unnamed-chunk-6

boxplot(wind~day, data = storm, xlab = "Day", ylab = "Wind Pressure")

plot of chunk unnamed-chunk-6

boxplot(wind~hour, data = storm, xlab = "Hour", ylab = "Wind Pressure")

plot of chunk unnamed-chunk-6

It can be seen from the boxplot above, that there are two rows of data that contain the hour 1 and 15, so we will take those out for the purpose of our analysis.

Testing

ANOVA tests will be performed.

#ANOVA

#The following 3 tests will be blocking on year.
modely_month <- aov(wind~year+as.factor(month),data = storm)
anova(modely_month)
## Analysis of Variance Table
## 
## Response: wind
##                    Df  Sum Sq Mean Sq F value  Pr(>F)    
## year                5   31268    6254    10.0 1.7e-09 ***
## as.factor(month)    6   93355   15559    24.9 < 2e-16 ***
## Residuals        2733 1708610     625                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This ANOVA test produced a p-value of 2e-16, blocked for month, which showed us that the probability that the variation of wind can be attributed to month, when blocked for year. This p-value indicates that we reject the null hypothesis.

modely_day <- aov(wind~year+as.factor(day),data = storm)
anova(modely_day)
## Analysis of Variance Table
## 
## Response: wind
##                  Df  Sum Sq Mean Sq F value  Pr(>F)    
## year              5   31268    6254    9.65 3.8e-09 ***
## as.factor(day)   30   46325    1544    2.38 3.7e-05 ***
## Residuals      2709 1755640     648                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This ANOVA test produced a p-value of 3.7e-05, blocked for month, which showed us that the probability that the variation of wind can be attributed to day, when blocked for year. This p-value indicates that we reject the null hypothesis.

modely_hour <- aov(wind~year+as.factor(hour),data = storm)
anova(modely_hour)
## Analysis of Variance Table
## 
## Response: wind
##                   Df  Sum Sq Mean Sq F value  Pr(>F)    
## year               5   31268    6254     9.5 5.4e-09 ***
## as.factor(hour)    3     207      69     0.1    0.96    
## Residuals       2736 1801758     659                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This ANOVA test produced a p-value of 0.96, blocked for month, which showed us that the probability that the variation of wind cannot be attributed to month, when blocked for year. This p-value indicates that we fail to reject the null hypothesis.

#ANOVA

#The following 3 tests will be blocking on type.
modelt_month = aov(wind~type+as.factor(month),data = storm)
anova(modelt_month)
## Analysis of Variance Table
## 
## Response: wind
##                    Df  Sum Sq Mean Sq F value  Pr(>F)    
## type                3 1324947  441649 2414.91 < 2e-16 ***
## as.factor(month)    6    8098    1350    7.38 7.5e-08 ***
## Residuals        2735  500188     183                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This ANOVA test produced a p-value of 7.5e-08, blocked for month, which showed us that the probability that the variation of wind can be attributed to month, when blocked for year. This p-value indicates that we reject the null hypothesis.

modelt_day = aov(wind~type+as.factor(day),data = storm)
anova(modelt_day)
## Analysis of Variance Table
## 
## Response: wind
##                  Df  Sum Sq Mean Sq F value  Pr(>F)    
## type              3 1324947  441649 2445.36 < 2e-16 ***
## as.factor(day)   30   18661     622    3.44 9.2e-10 ***
## Residuals      2711  489625     181                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This ANOVA test produced a p-value of 9.2e-10, blocked for day, which showed us that the probability that the variation of wind can be attributed to day, when blocked for type. This p-value indicates that we reject the null hypothesis.

modelt_hour = aov(wind~type+as.factor(hour),data = storm)
anova(modelt_hour)
## Analysis of Variance Table
## 
## Response: wind
##                   Df  Sum Sq Mean Sq F value Pr(>F)    
## type               3 1324947  441649 2379.34 <2e-16 ***
## as.factor(hour)    3      64      21    0.11   0.95    
## Residuals       2738  508223     186                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This ANOVA test produced a p-value of 0.9, blocked for type, which showed us that the probability that the variation of wind cannot be attributed to hour, when blocked for type. This p-value indicates that we fail to reject the null hypothesis.

#ANOVA
#These following ANOVA test for all factors within each block as well as for both block factors.
modely_all = aov(wind~year+(as.factor(hour)*as.factor(month)*as.factor(day)),data = storm)
anova(modely_all)
## Analysis of Variance Table
## 
## Response: wind
##                                                   Df  Sum Sq Mean Sq
## year                                               5   31268    6254
## as.factor(hour)                                    3     207      69
## as.factor(month)                                   6   93365   15561
## as.factor(day)                                    30   41360    1379
## as.factor(hour):as.factor(month)                  18     987      55
## as.factor(hour):as.factor(day)                    90    5377      60
## as.factor(month):as.factor(day)                  137  195519    1427
## as.factor(hour):as.factor(month):as.factor(day)  401   24764      62
## Residuals                                       2054 1440387     701
##                                                 F value  Pr(>F)    
## year                                               8.92 2.2e-08 ***
## as.factor(hour)                                    0.10  0.9610    
## as.factor(month)                                  22.19 < 2e-16 ***
## as.factor(day)                                     1.97  0.0014 ** 
## as.factor(hour):as.factor(month)                   0.08  1.0000    
## as.factor(hour):as.factor(day)                     0.09  1.0000    
## as.factor(month):as.factor(day)                    2.04 9.9e-11 ***
## as.factor(hour):as.factor(month):as.factor(day)    0.09  1.0000    
## Residuals                                                          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modelt_all = aov(wind~type+(as.factor(hour)*as.factor(month)*as.factor(day)),data = storm)
anova(modely_all)
## Analysis of Variance Table
## 
## Response: wind
##                                                   Df  Sum Sq Mean Sq
## year                                               5   31268    6254
## as.factor(hour)                                    3     207      69
## as.factor(month)                                   6   93365   15561
## as.factor(day)                                    30   41360    1379
## as.factor(hour):as.factor(month)                  18     987      55
## as.factor(hour):as.factor(day)                    90    5377      60
## as.factor(month):as.factor(day)                  137  195519    1427
## as.factor(hour):as.factor(month):as.factor(day)  401   24764      62
## Residuals                                       2054 1440387     701
##                                                 F value  Pr(>F)    
## year                                               8.92 2.2e-08 ***
## as.factor(hour)                                    0.10  0.9610    
## as.factor(month)                                  22.19 < 2e-16 ***
## as.factor(day)                                     1.97  0.0014 ** 
## as.factor(hour):as.factor(month)                   0.08  1.0000    
## as.factor(hour):as.factor(day)                     0.09  1.0000    
## as.factor(month):as.factor(day)                    2.04 9.9e-11 ***
## as.factor(hour):as.factor(month):as.factor(day)    0.09  1.0000    
## Residuals                                                          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model_all = aov(wind~year+type+(as.factor(hour)*as.factor(month)*as.factor(day)),data = storm)
anova(modely_all)
## Analysis of Variance Table
## 
## Response: wind
##                                                   Df  Sum Sq Mean Sq
## year                                               5   31268    6254
## as.factor(hour)                                    3     207      69
## as.factor(month)                                   6   93365   15561
## as.factor(day)                                    30   41360    1379
## as.factor(hour):as.factor(month)                  18     987      55
## as.factor(hour):as.factor(day)                    90    5377      60
## as.factor(month):as.factor(day)                  137  195519    1427
## as.factor(hour):as.factor(month):as.factor(day)  401   24764      62
## Residuals                                       2054 1440387     701
##                                                 F value  Pr(>F)    
## year                                               8.92 2.2e-08 ***
## as.factor(hour)                                    0.10  0.9610    
## as.factor(month)                                  22.19 < 2e-16 ***
## as.factor(day)                                     1.97  0.0014 ** 
## as.factor(hour):as.factor(month)                   0.08  1.0000    
## as.factor(hour):as.factor(day)                     0.09  1.0000    
## as.factor(month):as.factor(day)                    2.04 9.9e-11 ***
## as.factor(hour):as.factor(month):as.factor(day)    0.09  1.0000    
## Residuals                                                          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This ANOVA test produced a p-value less than 0.05 for all except when the factor hour was involved. This showed us that the probability that the variation of wind can be attributed to month and day, but not hour when blocked for year and type.

Tukey’s Test

A Tukey’s HSD test is performed in order to avoid the chance of discovering false positives in our analysis. These Tukey’s tests show us that an adjusted p-value of less than 0.05 at a 95% confidence interval indicates that the variation in wind pressure can be explained by something other than randomization.

#The following Tukey's HSD test were performed on the block Type.

#Block Type, Factor month
TukeyHSD(modelt_month, ordered=FALSE, conf.level =0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = wind ~ type + as.factor(month), data = storm)
## 
## $type
##                                       diff     lwr    upr p adj
## Hurricane-Extratropical             44.599  42.530  46.67     0
## Tropical Depression-Extratropical  -12.703 -15.004 -10.40     0
## Tropical Storm-Extratropical         7.261   5.202   9.32     0
## Tropical Depression-Hurricane      -57.301 -59.229 -55.37     0
## Tropical Storm-Hurricane           -37.338 -38.967 -35.71     0
## Tropical Storm-Tropical Depression  19.964  18.048  21.88     0
## 
## $`as.factor(month)`
##          diff     lwr    upr  p adj
## 7-6   -1.1988  -6.251  3.853 0.9926
## 8-6   -0.3546  -4.980  4.271 1.0000
## 9-6    3.2603  -1.308  7.828 0.3493
## 10-6   0.3113  -4.378  5.000 1.0000
## 11-6   1.2267  -4.116  6.570 0.9938
## 12-6   6.5232  -9.181 22.228 0.8844
## 8-7    0.8441  -2.081  3.769 0.9793
## 9-7    4.4591   1.626  7.292 0.0001
## 10-7   1.5101  -1.514  4.534 0.7608
## 11-7   2.4255  -1.538  6.389 0.5443
## 12-7   7.7219  -7.568 23.012 0.7509
## 9-8    3.6149   1.642  5.588 0.0000
## 10-8   0.6660  -1.573  2.905 0.9759
## 11-8   1.5814  -1.821  4.984 0.8172
## 12-8   6.8778  -8.277 22.032 0.8335
## 10-9  -2.9490  -5.067 -0.831 0.0008
## 11-9  -2.0336  -5.357  1.290 0.5446
## 12-9   3.2629 -11.874 18.400 0.9956
## 11-10  0.9154  -2.573  4.404 0.9874
## 12-10  6.2118  -8.962 21.386 0.8913
## 12-11  5.2964 -10.092 20.685 0.9506
#Block Type, Factor month
TukeyHSD(modelt_day, ordered=FALSE, conf.level =0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = wind ~ type + as.factor(day), data = storm)
## 
## $type
##                                       diff     lwr     upr p adj
## Hurricane-Extratropical             44.599  42.543  46.655     0
## Tropical Depression-Extratropical  -12.703 -14.990 -10.415     0
## Tropical Storm-Extratropical         7.261   5.215   9.307     0
## Tropical Depression-Hurricane      -57.301 -59.217 -55.386     0
## Tropical Storm-Hurricane           -37.338 -38.957 -35.719     0
## Tropical Storm-Tropical Depression  19.964  18.060  21.867     0
## 
## $`as.factor(day)`
##             diff       lwr      upr  p adj
## 2-1    -0.658069  -8.14766  6.83152 1.0000
## 3-1     0.578026  -7.26693  8.42298 1.0000
## 4-1     4.913101  -2.87024 12.69644 0.8666
## 5-1     1.070733  -6.34985  8.49132 1.0000
## 6-1     0.960995  -6.50513  8.42712 1.0000
## 7-1     2.961853  -4.85193 10.77564 0.9999
## 8-1     3.761207  -3.99238 11.51479 0.9951
## 9-1     5.420605  -2.62815 13.46936 0.7687
## 10-1    3.108272  -5.31311 11.52966 1.0000
## 11-1    2.454570  -5.96682 10.87596 1.0000
## 12-1    8.602940   0.62552 16.58036 0.0171
## 13-1    9.192708   1.28313 17.10228 0.0047
## 14-1    2.584963  -5.08332 10.25325 1.0000
## 15-1    0.523579  -6.89701  7.94416 1.0000
## 16-1   -1.078927  -8.47741  6.31956 1.0000
## 17-1    3.892184  -3.55095 11.33531 0.9852
## 18-1    1.573632  -5.89250  9.03976 1.0000
## 19-1    1.374107  -5.70507  8.45328 1.0000
## 20-1    3.634746  -3.44443 10.71392 0.9886
## 21-1   -0.289601  -7.41839  6.83919 1.0000
## 22-1    0.001549  -7.04590  7.04900 1.0000
## 23-1   -1.005253  -8.08443  6.07392 1.0000
## 24-1   -1.124189  -8.04079  5.79241 1.0000
## 25-1    4.301661  -2.76152 11.36484 0.9060
## 26-1    1.430225  -5.69857  8.55901 1.0000
## 27-1    3.395226  -3.59178 10.38223 0.9950
## 28-1    4.221654  -2.79509 11.23840 0.9172
## 29-1   -0.715009  -7.81045  6.38043 1.0000
## 30-1   -1.922675  -9.06857  5.22322 1.0000
## 31-1   -0.988809  -9.19187  7.21425 1.0000
## 3-2     1.236095  -6.87633  9.34852 1.0000
## 4-2     5.571170  -2.48168 13.62402 0.7181
## 5-2     1.728802  -5.97400  9.43160 1.0000
## 6-2     1.619064  -6.12762  9.36575 1.0000
## 7-2     3.619922  -4.46236 11.70220 0.9987
## 8-2     4.419276  -3.60482 12.44337 0.9704
## 9-2     6.078675  -2.23099 14.38834 0.5981
## 10-2    3.766341  -4.90475 12.43743 0.9992
## 11-2    3.112639  -5.55845 11.78373 1.0000
## 12-2    9.261009   1.02042 17.50160 0.0087
## 13-2    9.850778   1.67585 18.02570 0.0023
## 14-2    3.243032  -4.69867 11.18473 0.9998
## 15-2    1.181648  -6.52115  8.88445 1.0000
## 16-2   -0.420858  -8.10237  7.26065 1.0000
## 17-2    4.550253  -3.17427 12.27477 0.9341
## 18-2    2.231701  -5.51498  9.97838 1.0000
## 19-2    2.032176  -5.34229  9.40664 1.0000
## 20-2    4.292815  -3.08165 11.66728 0.9423
## 21-2    0.368468  -7.05364  7.79057 1.0000
## 22-2    0.659618  -6.68440  8.00363 1.0000
## 23-2   -0.347184  -7.72165  7.02728 1.0000
## 24-2   -0.466120  -7.68466  6.75242 1.0000
## 25-2    4.959730  -2.39938 12.31885 0.7674
## 26-2    2.088294  -5.33381  9.51040 1.0000
## 27-2    4.053295  -3.23274 11.33933 0.9664
## 28-2    4.879723  -2.43483 12.19428 0.7852
## 29-2   -0.056940  -7.44702  7.33314 1.0000
## 30-2   -1.264606  -8.70314  6.17393 1.0000
## 31-2   -0.330740  -8.78995  8.12847 1.0000
## 4-3     4.335075  -4.04930 12.71945 0.9873
## 5-3     0.492707  -7.55605  8.54146 1.0000
## 6-3     0.382968  -7.70779  8.47373 1.0000
## 7-3     2.383827  -6.02882 10.79647 1.0000
## 8-3     3.183180  -5.17358 11.53994 0.9999
## 9-3     4.842579  -3.78875 13.47391 0.9627
## 10-3    2.530246  -6.44957 11.51006 1.0000
## 11-3    1.876544  -7.10327 10.85636 1.0000
## 12-3    8.024914  -0.53993 16.58976 0.1069
## 13-3    8.614682   0.11299 17.11637 0.0421
## 14-3    2.006937  -6.27074 10.28461 1.0000
## 15-3   -0.054447  -8.10320  7.99431 1.0000
## 16-3   -1.656954  -9.68534  6.37143 1.0000
## 17-3    3.314158  -4.75539 11.38370 0.9997
## 18-3    0.995606  -7.09516  9.08637 1.0000
## 19-3    0.796080  -6.93904  8.53120 1.0000
## 20-3    3.056720  -4.67840 10.79184 0.9999
## 21-3   -0.867627  -8.64818  6.91293 1.0000
## 22-3   -0.576477  -8.28257  7.12962 1.0000
## 23-3   -1.583279  -9.31840  6.15184 1.0000
## 24-3   -1.702215  -9.28883  5.88440 1.0000
## 25-3    3.723635  -3.99685 11.44412 0.9955
## 26-3    0.852199  -6.92836  8.63275 1.0000
## 27-3    2.817199  -4.83366 10.46805 1.0000
## 28-3    3.643628  -4.03440 11.32165 0.9966
## 29-3   -1.293036  -9.04304  6.45697 1.0000
## 30-3   -2.500701 -10.29693  5.29553 1.0000
## 31-3   -1.566835 -10.34223  7.20856 1.0000
## 5-4    -3.842368 -11.83108  4.14634 0.9957
## 6-4    -3.952106 -11.98314  4.07892 0.9939
## 7-4    -1.951248 -10.30646  6.40397 1.0000
## 8-4    -1.151894  -9.45084  7.14705 1.0000
## 9-4     0.507504  -8.06786  9.08287 1.0000
## 10-4   -1.804829 -10.73087  7.12121 1.0000
## 11-4   -2.458531 -11.38457  6.46751 1.0000
## 12-4    3.689839  -4.81861 12.19828 0.9993
## 13-4    4.279607  -4.16526 12.72447 0.9905
## 14-4   -2.328138 -10.54744  5.89116 1.0000
## 15-4   -4.389522 -12.37823  3.59919 0.9712
## 16-4   -5.992028 -13.96021  1.97615 0.5337
## 17-4   -1.020917  -9.03057  6.98874 1.0000
## 18-4   -3.339469 -11.37050  4.69156 0.9997
## 19-4   -3.538994 -11.21162  4.13363 0.9978
## 20-4   -1.278355  -8.95098  6.39427 1.0000
## 21-4   -5.202702 -12.92112  2.51572 0.7671
## 22-4   -4.911552 -12.55491  2.73181 0.8432
## 23-4   -5.918354 -13.59098  1.75427 0.4734
## 24-4   -6.037290 -13.56017  1.48559 0.3807
## 25-4   -0.611440  -8.26931  7.04643 1.0000
## 26-4   -3.482876 -11.20130  4.23555 0.9985
## 27-4   -1.517875  -9.10554  6.06979 1.0000
## 28-4   -0.691447  -8.30650  6.92361 1.0000
## 29-4   -5.628111 -13.31574  2.05952 0.5962
## 30-4   -6.835776 -14.57000  0.89845 0.1877
## 31-4   -5.901910 -14.62226  2.81844 0.7598
## 6-5    -0.109739  -7.78972  7.57025 1.0000
## 7-5     1.891120  -6.12726  9.90950 1.0000
## 8-5     2.690473  -5.26925 10.65020 1.0000
## 9-5     4.349872  -3.89765 12.59739 0.9833
## 10-5    2.037539  -6.57402 10.64909 1.0000
## 11-5    1.383837  -7.22772  9.99539 1.0000
## 12-5    7.532207  -0.64571 15.71013 0.1275
## 13-5    8.121975   0.01023 16.23372 0.0492
## 14-5    1.514230  -6.36242  9.39088 1.0000
## 15-5   -0.547154  -8.18287  7.08857 1.0000
## 16-5   -2.149661  -9.76390  5.46458 1.0000
## 17-5    2.821451  -4.83618 10.47908 1.0000
## 18-5    0.502898  -7.17709  8.18288 1.0000
## 19-5    0.303373  -7.00100  7.60775 1.0000
## 20-5    2.564013  -4.74036  9.86839 1.0000
## 21-5   -1.360334  -8.71280  5.99213 1.0000
## 22-5   -1.069184  -8.34281  6.20445 1.0000
## 23-5   -2.075986  -9.38036  5.22839 1.0000
## 24-5   -2.194922  -9.34184  4.95200 1.0000
## 25-5    3.230928  -4.05795 10.51980 0.9989
## 26-5    0.359491  -6.99298  7.71196 1.0000
## 27-5    2.324492  -4.89059  9.53957 1.0000
## 28-5    3.150921  -4.09296 10.39480 0.9992
## 29-5   -1.785743  -9.10588  5.53439 1.0000
## 30-5   -2.993409 -10.36246  4.37565 0.9998
## 31-5   -2.059542 -10.45771  6.33863 1.0000
## 7-6     2.000858  -6.05968 10.06140 1.0000
## 8-6     2.800212  -5.20199 10.80241 1.0000
## 9-6     4.459611  -3.82891 12.74813 0.9781
## 10-6    2.147278  -6.50355 10.79811 1.0000
## 11-6    1.493576  -7.15725 10.14440 1.0000
## 12-6    7.641945  -0.57732 15.86121 0.1159
## 13-6    8.231714   0.07828 16.38514 0.0442
## 14-6    1.623969  -6.29560  9.54354 1.0000
## 15-6   -0.437416  -8.11740  7.24257 1.0000
## 16-6   -2.039922  -9.69855  5.61871 1.0000
## 17-6    2.931189  -4.77058 10.63296 0.9999
## 18-6    0.612637  -7.11136  8.33663 1.0000
## 19-6    0.413112  -6.93752  7.76375 1.0000
## 20-6    2.673752  -4.67688 10.02439 1.0000
## 21-6   -1.250596  -8.64902  6.14783 1.0000
## 22-6   -0.959445  -8.27953  6.36064 1.0000
## 23-6   -1.966247  -9.31688  5.38439 1.0000
## 24-6   -2.085184  -9.27938  5.10901 1.0000
## 25-6    3.340667  -3.99457 10.67590 0.9983
## 26-6    0.469230  -6.92920  7.86766 1.0000
## 27-6    2.434231  -4.82768  9.69614 1.0000
## 28-6    3.260660  -4.02987 10.55118 0.9987
## 29-6   -1.676004  -9.04230  5.69029 1.0000
## 30-6   -2.883670 -10.29858  4.53124 0.9999
## 31-6   -1.949804 -10.38824  6.48864 1.0000
## 8-7     0.799354  -7.52816  9.12686 1.0000
## 9-7     2.458752  -6.14426 11.06176 1.0000
## 10-7    0.146419  -8.80618  9.09902 1.0000
## 11-7   -0.507283  -9.45988  8.44532 1.0000
## 12-7    5.641087  -2.89522 14.17739 0.8010
## 13-7    6.230855  -2.24208 14.70379 0.5859
## 14-7   -0.376890  -8.62503  7.87125 1.0000
## 15-7   -2.438274 -10.45665  5.58010 1.0000
## 16-7   -4.040780 -12.03871  3.95715 0.9909
## 17-7    0.930331  -7.10891  8.96958 1.0000
## 18-7   -1.388221  -9.44876  6.67232 1.0000
## 19-7   -1.587746  -9.29125  6.11576 1.0000
## 20-7    0.672893  -7.03061  8.37640 1.0000
## 21-7   -3.251454 -11.00058  4.49767 0.9996
## 22-7   -2.960304 -10.63467  4.71406 0.9999
## 23-7   -3.967106 -11.67061  3.73640 0.9881
## 24-7   -4.086042 -11.64042  3.46834 0.9765
## 25-7    1.339808  -6.34900  9.02862 1.0000
## 26-7   -1.531628  -9.28075  6.21750 1.0000
## 27-7    0.433373  -7.18552  8.05226 1.0000
## 28-7    1.259801  -6.38637  8.90597 1.0000
## 29-7   -3.676862 -11.39532  4.04159 0.9963
## 30-7   -4.884528 -12.64939  2.88034 0.8709
## 31-7   -3.950662 -12.69820  4.79688 0.9985
## 9-8     1.659399  -6.88897 10.20777 1.0000
## 10-8   -0.652934  -9.55304  8.24717 1.0000
## 11-8   -1.306636 -10.20674  7.59347 1.0000
## 12-8    4.841733  -3.63950 13.32297 0.9540
## 13-8    5.431502  -2.98595 13.84895 0.8373
## 14-8   -1.176244  -9.36738  7.01489 1.0000
## 15-8   -3.237628 -11.19735  4.72210 0.9998
## 16-8   -4.840134 -12.77926  3.09899 0.9050
## 17-8    0.130977  -7.84977  8.11173 1.0000
## 18-8   -2.187575 -10.18978  5.81463 1.0000
## 19-8   -2.387100 -10.02954  5.25534 1.0000
## 20-8   -0.126460  -7.76890  7.51598 1.0000
## 21-8   -4.050808 -11.73923  3.63761 0.9835
## 22-8   -3.759658 -11.37272  3.85340 0.9936
## 23-8   -4.766459 -12.40890  2.87598 0.8810
## 24-8   -4.885396 -12.37749  2.60670 0.8219
## 25-8    0.540455  -7.08717  8.16808 1.0000
## 26-8   -2.330982 -10.01940  5.35744 1.0000
## 27-8   -0.365981  -7.92312  7.19116 1.0000
## 28-8    0.460448  -7.12420  8.04509 1.0000
## 29-8   -4.476216 -12.13372  3.18129 0.9395
## 30-8   -5.683882 -13.38817  2.02040 0.5785
## 31-8   -4.750016 -13.44383  3.94379 0.9733
## 10-9   -2.312333 -11.47073  6.84606 1.0000
## 11-9   -2.966035 -12.12443  6.19236 1.0000
## 12-9    3.182335  -5.56956 11.93423 1.0000
## 13-9    3.772103  -4.91800 12.46220 0.9993
## 14-9   -2.835642 -11.30671  5.63543 1.0000
## 15-9   -4.897027 -13.14455  3.35049 0.9281
## 16-9   -6.499533 -14.72717  1.72811 0.4171
## 17-9   -1.528421  -9.79623  6.73939 1.0000
## 18-9   -3.846974 -12.13549  4.44155 0.9976
## 19-9   -4.046499 -11.98824  3.89524 0.9898
## 20-9   -1.785859  -9.72760  6.15588 1.0000
## 21-9   -5.710206 -13.69620  2.27579 0.6492
## 22-9   -5.419056 -13.33253  2.49442 0.7380
## 23-9   -6.425858 -14.36760  1.51588 0.3621
## 24-9   -6.544794 -14.34196  1.25238 0.2830
## 25-9   -1.118944  -9.04643  6.80854 1.0000
## 26-9   -3.990381 -11.97638  3.99562 0.9923
## 27-9   -2.025380  -9.88507  5.83431 1.0000
## 28-9   -1.198951  -9.08509  6.68719 1.0000
## 29-9   -6.135615 -14.09185  1.82062 0.4739
## 30-9   -7.343281 -15.34455  0.65799 0.1322
## 31-9   -6.409414 -15.36747  2.54864 0.6478
## 11-10  -0.653702 -10.14125  8.83384 1.0000
## 12-10   5.494668  -3.60110 14.59044 0.9136
## 13-10   6.084436  -2.95189 15.12076 0.7691
## 14-10  -0.523309  -9.34920  8.30258 1.0000
## 15-10  -2.584693 -11.19625  6.02686 1.0000
## 16-10  -4.187200 -12.77972  4.40532 0.9948
## 17-10   0.783912  -7.84708  9.41490 1.0000
## 18-10  -1.534641 -10.18547  7.11619 1.0000
## 19-10  -1.734166 -10.05333  6.58500 1.0000
## 20-10   0.526474  -7.79269  8.84564 1.0000
## 21-10  -3.397873 -11.75930  4.96355 0.9998
## 22-10  -3.106723 -11.39891  5.18546 1.0000
## 23-10  -4.113525 -12.43269  4.20564 0.9934
## 24-10  -4.232461 -12.41373  3.94881 0.9872
## 25-10   1.193389  -7.11217  9.49895 1.0000
## 26-10  -1.678048 -10.03947  6.68338 1.0000
## 27-10   0.286953  -7.95392  8.52783 1.0000
## 28-10   1.113382  -7.15272  9.37948 1.0000
## 29-10  -3.823282 -12.15629  4.50973 0.9980
## 30-10  -5.030948 -13.40696  3.34507 0.9186
## 31-10  -4.097081 -13.39138  5.19722 0.9990
## 12-11   6.148370  -2.94740 15.24414 0.7621
## 13-11   6.738138  -2.29819 15.77446 0.5536
## 14-11   0.130393  -8.69550  8.95628 1.0000
## 15-11  -1.930992 -10.54255  6.68056 1.0000
## 16-11  -3.533498 -12.12601  5.05902 0.9997
## 17-11   1.437614  -7.19337 10.06860 1.0000
## 18-11  -0.880939  -9.53177  7.76989 1.0000
## 19-11  -1.080464  -9.39963  7.23870 1.0000
## 20-11   1.180176  -7.13899  9.49934 1.0000
## 21-11  -2.744171 -11.10560  5.61725 1.0000
## 22-11  -2.453021 -10.74521  5.83916 1.0000
## 23-11  -3.459823 -11.77899  4.85934 0.9997
## 24-11  -3.578759 -11.76003  4.60251 0.9991
## 25-11   1.847091  -6.45847 10.15265 1.0000
## 26-11  -1.024346  -9.38577  7.33708 1.0000
## 27-11   0.940655  -7.30022  9.18153 1.0000
## 28-11   1.767084  -6.49902 10.03319 1.0000
## 29-11  -3.169580 -11.50259  5.16343 0.9999
## 30-11  -4.377246 -12.75326  3.99877 0.9853
## 31-11  -3.443379 -12.73768  5.85092 1.0000
## 13-12   0.589768  -8.03430  9.21384 1.0000
## 14-12  -6.017977 -14.42130  2.38535 0.6458
## 15-12  -8.079361 -16.25728  0.09856 0.0582
## 16-12  -9.681868 -17.83974 -1.52400 0.0032
## 17-12  -4.710756 -12.90914  3.48763 0.9503
## 18-12  -7.029308 -15.24857  1.18996 0.2461
## 19-12  -7.228833 -15.09827  0.64060 0.1310
## 20-12  -4.968194 -12.83763  2.90124 0.8665
## 21-12  -8.892541 -16.80664 -0.97844 0.0087
## 22-12  -8.601391 -16.44230 -0.76048 0.0130
## 23-12  -9.608193 -17.47763 -1.73876 0.0018
## 24-12  -9.727129 -17.45064 -2.00362 0.0009
## 25-12  -4.301279 -12.15633  3.55377 0.9725
## 26-12  -7.172715 -15.08681  0.74138 0.1493
## 27-12  -5.207714 -12.99434  2.57891 0.7809
## 28-12  -4.381286 -12.19460  3.43203 0.9629
## 29-12  -9.317950 -17.20202 -1.43388 0.0034
## 30-12 -10.525615 -18.45512 -2.59611 0.0003
## 31-12  -9.591749 -18.48576 -0.69774 0.0171
## 14-13  -6.607745 -14.94669  1.73120 0.4100
## 15-13  -8.669130 -16.78088 -0.55738 0.0197
## 16-13 -10.271636 -18.36317 -2.18010 0.0008
## 17-13  -5.300525 -13.43290  2.83185 0.8226
## 18-13  -7.619077 -15.77251  0.53435 0.1100
## 19-13  -7.818602 -15.61925 -0.01795 0.0485
## 20-13  -5.557962 -13.35861  2.24269 0.6569
## 21-13  -9.482310 -17.32801 -1.63661 0.0022
## 22-13  -9.191159 -16.96303 -1.41929 0.0034
## 23-13 -10.197961 -17.99861 -2.39731 0.0004
## 24-13 -10.316897 -17.97031 -2.66348 0.0002
## 25-13  -4.891047 -12.67718  2.89509 0.8726
## 26-13  -7.762484 -15.60818  0.08322 0.0572
## 27-13  -5.797483 -13.51458  1.91961 0.5360
## 28-13  -4.971054 -12.71509  2.77298 0.8446
## 29-13  -9.907718 -17.72313 -2.09231 0.0008
## 30-13 -11.115384 -18.97663 -3.25414 0.0000
## 31-13 -10.181518 -19.01473 -1.34831 0.0055
## 15-14  -2.061384  -9.93804  5.81527 1.0000
## 16-14  -3.663891 -11.51972  4.19194 0.9974
## 17-14   1.307221  -6.59067  9.20512 1.0000
## 18-14  -1.011331  -8.93090  6.90824 1.0000
## 19-14  -1.210857  -8.76674  6.34502 1.0000
## 20-14   1.049783  -6.50610  8.60566 1.0000
## 21-14  -2.874564 -10.47695  4.72782 0.9999
## 22-14  -2.583414 -10.10958  4.94275 1.0000
## 23-14  -3.590216 -11.14610  3.96566 0.9965
## 24-14  -3.709152 -11.11293  3.69463 0.9920
## 25-14   1.716698  -5.82420  9.25760 1.0000
## 26-14  -1.154738  -8.75712  6.44764 1.0000
## 27-14   0.810263  -6.65933  8.27985 1.0000
## 28-14   1.636691  -5.86073  9.13411 1.0000
## 29-14  -3.299973 -10.87109  4.27114 0.9992
## 30-14  -4.507638 -12.12606  3.11079 0.9308
## 31-14  -3.573772 -12.19159  5.04404 0.9997
## 16-15  -1.602506  -9.21675  6.01173 1.0000
## 17-15   3.368605  -4.28903 11.02624 0.9990
## 18-15   1.050053  -6.62993  8.73004 1.0000
## 19-15   0.850528  -6.45385  8.15490 1.0000
## 20-15   3.111167  -4.19321 10.41554 0.9995
## 21-15  -0.813180  -8.16565  6.53929 1.0000
## 22-15  -0.522030  -7.79566  6.75160 1.0000
## 23-15  -1.528832  -8.83320  5.77554 1.0000
## 24-15  -1.647768  -8.79469  5.49915 1.0000
## 25-15   3.778082  -3.51079 11.06696 0.9869
## 26-15   0.906646  -6.44582  8.25911 1.0000
## 27-15   2.871647  -4.34343 10.08672 0.9999
## 28-15   3.698075  -3.54580 10.94196 0.9895
## 29-15  -1.238588  -8.55872  6.08155 1.0000
## 30-15  -2.446254  -9.81531  4.92280 1.0000
## 31-15  -1.512388  -9.91056  6.88578 1.0000
## 17-16   4.971111  -2.66510 12.60732 0.8244
## 18-16   2.652559  -5.00607 10.31119 1.0000
## 19-16   2.453034  -4.82888  9.73495 1.0000
## 20-16   4.713674  -2.56824 11.99559 0.8328
## 21-16   0.789326  -6.54083  8.11948 1.0000
## 22-16   1.080477  -6.17060  8.33155 1.0000
## 23-16   0.073675  -7.20824  7.35559 1.0000
## 24-16  -0.045261  -7.16923  7.07871 1.0000
## 25-16   5.380589  -1.88578 12.64696 0.5699
## 26-16   2.509152  -4.82101  9.83931 1.0000
## 27-16   4.474153  -2.71819 11.66650 0.8839
## 28-16   5.300582  -1.92065 12.52182 0.5902
## 29-16   0.363918  -6.93381  7.66164 1.0000
## 30-16  -0.843748  -8.19054  6.50305 1.0000
## 31-16   0.090118  -8.28853  8.46877 1.0000
## 18-17  -2.318552 -10.02032  5.38322 1.0000
## 19-17  -2.518077  -9.84535  4.80920 1.0000
## 20-17  -0.257438  -7.58471  7.06984 1.0000
## 21-17  -4.181785 -11.55700  3.19343 0.9575
## 22-17  -3.890635 -11.18726  3.40599 0.9806
## 23-17  -4.897437 -12.22471  2.42984 0.7820
## 24-17  -5.016373 -12.18670  2.15395 0.6955
## 25-17   0.409477  -6.90235  7.72130 1.0000
## 26-17  -2.461959  -9.83718  4.91326 1.0000
## 27-17  -0.496958  -7.73522  6.74130 1.0000
## 28-17   0.329470  -6.93750  7.59644 1.0000
## 29-17  -4.607193 -11.95018  2.73579 0.8740
## 30-17  -5.814859 -13.20661  1.57690 0.4269
## 31-17  -4.880993 -13.29909  3.53711 0.9448
## 19-18  -0.199525  -7.55016  7.15111 1.0000
## 20-18   2.061114  -5.28952  9.41175 1.0000
## 21-18  -1.863233  -9.26166  5.53519 1.0000
## 22-18  -1.572083  -8.89217  5.74800 1.0000
## 23-18  -2.578885  -9.92952  4.77175 1.0000
## 24-18  -2.697821  -9.89202  4.49637 1.0000
## 25-18   2.728030  -4.60720 10.06326 1.0000
## 26-18  -0.143407  -7.54183  7.25502 1.0000
## 27-18   1.821594  -5.44031  9.08350 1.0000
## 28-18   2.648023  -4.64250  9.93855 1.0000
## 29-18  -2.288641  -9.65494  5.07765 1.0000
## 30-18  -3.496307 -10.91122  3.91860 0.9969
## 31-18  -2.562441 -11.00088  5.87600 1.0000
## 20-19   2.260640  -4.69662  9.21790 1.0000
## 21-19  -1.663708  -8.67145  5.34403 1.0000
## 22-19  -1.372557  -8.29754  5.55242 1.0000
## 23-19  -2.379359  -9.33662  4.57790 1.0000
## 24-19  -2.498296  -9.29006  4.29347 1.0000
## 25-19   2.927555  -4.01343  9.86854 0.9996
## 26-19   0.056118  -6.95162  7.06386 1.0000
## 27-19   2.021119  -4.84233  8.88457 1.0000
## 28-19   2.847548  -4.04618  9.74127 0.9997
## 29-19  -2.089116  -9.06292  4.88469 1.0000
## 30-19  -3.296782 -10.32192  3.72836 0.9971
## 31-19  -2.362916 -10.46100  5.73517 1.0000
## 21-20  -3.924347 -10.93209  3.08339 0.9635
## 22-20  -3.633197 -10.55818  3.29178 0.9845
## 23-20  -4.639999 -11.59726  2.31726 0.7857
## 24-20  -4.758935 -11.55070  2.03283 0.6923
## 25-20   0.666915  -6.27407  7.60790 1.0000
## 26-20  -2.204521  -9.21226  4.80322 1.0000
## 27-20  -0.239520  -7.10297  6.62393 1.0000
## 28-20   0.586908  -6.30682  7.48063 1.0000
## 29-20  -4.349756 -11.32356  2.62405 0.8809
## 30-20  -5.557421 -12.58256  1.46772 0.4138
## 31-20  -4.623555 -12.72164  3.47453 0.9539
## 22-21   0.291150  -6.68454  7.26684 1.0000
## 23-21  -0.715652  -7.72339  6.29209 1.0000
## 24-21  -0.834588  -7.67805  6.00888 1.0000
## 25-21   4.591262  -2.40032 11.58284 0.8110
## 26-21   1.719826  -5.33803  8.77768 1.0000
## 27-21   3.684827  -3.22979 10.59944 0.9808
## 28-21   4.511255  -2.43341 11.45592 0.8276
## 29-21  -0.425408  -7.44957  6.59876 1.0000
## 30-21  -1.633074  -8.70821  5.44206 1.0000
## 31-21  -0.699208  -8.84070  7.44228 1.0000
## 23-22  -1.006802  -7.93178  5.91818 1.0000
## 24-22  -1.125738  -7.88443  5.63296 1.0000
## 25-22   4.300112  -2.60852 11.20874 0.8833
## 26-22   1.428676  -5.54701  8.40436 1.0000
## 27-22   3.393677  -3.43705 10.22440 0.9930
## 28-22   4.220105  -2.64104 11.08125 0.8962
## 29-22  -0.716559  -7.65816  6.22504 1.0000
## 30-22  -1.924224  -8.91739  5.06894 1.0000
## 31-22  -0.990358  -9.06072  7.08000 1.0000
## 24-23  -0.118936  -6.91071  6.67283 1.0000
## 25-23   5.306914  -1.63407 12.24790 0.4944
## 26-23   2.435478  -4.57226  9.44322 1.0000
## 27-23   4.400478  -2.46297 11.26393 0.8463
## 28-23   5.226907  -1.66682 12.12063 0.5142
## 29-23   0.290243  -6.68356  7.26405 1.0000
## 30-23  -0.917422  -7.94256  6.10772 1.0000
## 31-23   0.016444  -8.08164  8.11453 1.0000
## 25-24   5.425850  -1.34925 12.20095 0.3854
## 26-24   2.554414  -4.28905  9.39788 1.0000
## 27-24   4.519415  -2.17623 11.21506 0.7647
## 28-24   5.345843  -1.38082 12.07251 0.4031
## 29-24   0.409179  -6.39954  7.21790 1.0000
## 30-24  -0.798486  -7.65977  6.06280 1.0000
## 31-24   0.135380  -7.82097  8.09173 1.0000
## 26-25  -2.871437  -9.86302  4.12015 0.9997
## 27-25  -0.906436  -7.75339  5.94052 1.0000
## 28-25  -0.080007  -6.95731  6.79729 1.0000
## 29-25  -5.016671 -11.97424  1.94090 0.6307
## 30-25  -6.224337 -13.23336  0.78469 0.1800
## 31-25  -5.290470 -13.37458  2.79363 0.8164
## 27-26   1.965001  -4.94961  8.87962 1.0000
## 28-26   2.791430  -4.15323  9.73609 0.9998
## 29-26  -2.145234  -9.16940  4.87893 1.0000
## 30-26  -3.352900 -10.42803  3.72223 0.9966
## 31-26  -2.419034 -10.56052  5.72246 1.0000
## 28-27   0.826429  -5.97261  7.62547 1.0000
## 29-27  -4.110235 -10.99046  2.76999 0.9232
## 30-27  -5.317901 -12.25015  1.61435 0.4864
## 31-27  -4.384035 -12.40167  3.63360 0.9730
## 29-28  -4.936664 -11.84709  1.97376 0.6512
## 30-28  -6.144330 -13.10655  0.81789 0.1901
## 31-28  -5.210463 -13.25402  2.83310 0.8317
## 30-29  -1.207666  -8.24919  5.83386 1.0000
## 31-29  -0.273800  -8.38610  7.83850 1.0000
## 31-30   0.933866  -7.22261  9.09034 1.0000
#Block Type, Factor month
TukeyHSD(modelt_hour, ordered=FALSE, conf.level =0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = wind ~ type + as.factor(hour), data = storm)
## 
## $type
##                                       diff     lwr     upr p adj
## Hurricane-Extratropical             44.599  42.514  46.684     0
## Tropical Depression-Extratropical  -12.703 -15.021 -10.384     0
## Tropical Storm-Extratropical         7.261   5.187   9.335     0
## Tropical Depression-Hurricane      -57.301 -59.243 -55.360     0
## Tropical Storm-Hurricane           -37.338 -38.979 -35.697     0
## Tropical Storm-Tropical Depression  19.964  18.034  21.894     0
## 
## $`as.factor(hour)`
##           diff    lwr   upr  p adj
## 6-0    0.09522 -1.806 1.997 0.9992
## 12-0  -0.31553 -2.203 1.572 0.9734
## 18-0  -0.05000 -1.934 1.834 0.9999
## 12-6  -0.41076 -2.309 1.487 0.9449
## 18-6  -0.14523 -2.039 1.749 0.9973
## 18-12  0.26553 -1.615 2.146 0.9836

Diagnostics/Model Adequacy Checking

The adequacy of the ANOVA model can be checked through a Shapiro-Wilk normality test.

shapiro.test(x$wind)
## 
##  Shapiro-Wilk normality test
## 
## data:  x$wind
## W = 0.9273, p-value < 2.2e-16

The results from the Shapiro-Wilk NOrmality test show us that the data is normally distributed because of the p-value being less than 0.1.

A QQ plot is used in order to test the normality of the data. The following QQ plots were plotted in order for us to confirm our assumption of normality.

qqnorm(residuals(modely_month), main = "Normal QQ Plot for Month (Blocked by Year)", ylab = "Wind Pressure")
qqline(residuals(modely_month))

plot of chunk unnamed-chunk-16

qqnorm(residuals(modely_day), main = "Normal QQ Plot for Day (Blocked by Year)", ylab = "Wind Pressure")
qqline(residuals(modely_day))

plot of chunk unnamed-chunk-17

qqnorm(residuals(modely_hour), main = "Normal QQ Plot for Hour (Blocked by Year)", ylab = "Wind Pressure")
qqline(residuals(modely_hour))

plot of chunk unnamed-chunk-18

qqnorm(residuals(modelt_month), main = "Normal QQ Plot for Month (Blocked by Type)", ylab = "Wind Pressure")
qqline(residuals(modelt_month))

plot of chunk unnamed-chunk-19

qqnorm(residuals(modelt_day), main = "Normal QQ Plot for Day (Blocked by Type)", ylab = "Wind Pressure")
qqline(residuals(modelt_day))

plot of chunk unnamed-chunk-20

qqnorm(residuals(modelt_hour), main = "Normal QQ Plot for Hour (Blocked by Type)", ylab = "Wind Pressure")
qqline(residuals(modelt_hour))

plot of chunk unnamed-chunk-21 Our QQ plots are fairly linear with a slight non-linear tail. These graphs indicate that the population of the samples were normally distributed. The use of ANOVA testing was correct for our model.

plot(fitted(modely_month), residuals(modely_month),main="Residual vs Fitted Plot for Month: Year Blocked")

plot of chunk unnamed-chunk-22

plot(fitted(modely_day), residuals(modely_day), main="Residual vs Fitted Plot for Day: Year Blocked")

plot of chunk unnamed-chunk-22

plot(fitted(modely_hour), residuals(modely_hour), main="Residual vs Fitted Plot for Hour: Year Blocked")

plot of chunk unnamed-chunk-22

plot(fitted(modelt_month), residuals(modelt_month), main="Residual vs Fitted Plot for Month: Type Blocked")

plot of chunk unnamed-chunk-22

plot(fitted(modelt_day), residuals(modelt_day), main="Residual vs Fitted Plot for Day: Type Blocked")

plot of chunk unnamed-chunk-22

plot(fitted(modelt_hour), residuals(modelt_hour), main="Residual vs Fitted Plot for Hour: Type Blocked")

plot of chunk unnamed-chunk-22 Residuals vs. Fitted Plots are a graph that is used for residual analysis. They help identify linearity, outliers, and error variances.

From our data plots, it can be seen that there is a slight skew positively. However, there were no extreme outliers or error variances, which indicate that the ANOVA testing was appropriate.

#The following are interaction plots of the three factors
interaction.plot(storm$day, storm$month, storm$wind, xlab="Month", ylab="Wind Pressure", trace.label="Day", main="Interaction Plot: Month vs. Day")

plot of chunk unnamed-chunk-23

interaction.plot(storm$month, storm$hour, storm$wind, xlab="Month", ylab="Wind Pressure", trace.label="Day", main="Interaction Plot: Month vs. Hour")

plot of chunk unnamed-chunk-23

interaction.plot(storm$day, storm$hour, storm$wind, xlab="Month", ylab="Wind Pressure", trace.label="Day", main="Interaction Plot: Day vs. Hour")

plot of chunk unnamed-chunk-23

Interaction plots are used in order to display the mean of the response for two-way combinations of factors. They indicate the interaction between these factors through visual plots. Interactions are displayed through changes in slope and intersections of the factors.

It can be seen in our three interaction plots that there are many interactions between the factors. The interactions plots of Month vs Day and Hour vs Day show there are more interactions than the Month vs Hour plot.

4. References to the literature

No literature was used.

5. Appendices

A summary of, or pointer to, the raw data

complete and documented R code

The data originated from the National Hurricane Center’s archive of Tropical Cyclone Reports (http://www.nhc.noaa.gov/). This dataset was hand-scraped from best track tables in the individual tropical cyclone reports (PDF, HTML and Microsoft Word) by Jon Hobbs and is publically available at: https://github.com/hadley/nasaweather.

The Tropical Cyclone Reports had a variety of storm type designations and there appeared to be no consistent naming convention for cyclones that were not hurricanes, tropical depressions, or tropical storm. Many of these designations have been combined into the “Extratropical” category in this dataset.