c— title: “Week2 summary” author: “haha” date: “20 January 2018” output: html_document —

Function for season

#########season function
Season <- function(data2) {
  d<- as.Date(strptime(data2$Start.Date,format="%d/%m/%Y %H:%M",tz="UTC"))
  WS <- as.Date("21/12/2016", format = "%d/%m/%Y") # Winter 
  SE <- as.Date("20/3/2016",  format = "%d/%m/%Y") # Spring 
  SS <- as.Date("21/6/2016",  format = "%d/%m/%Y") # Summer 
  FE <- as.Date("22/9/2016",  format = "%d/%m/%Y") # Fall
  
  ifelse (d >= WS | d < SE, "Winter",
          ifelse (d >= SE & d < SS, "Spring",
                  ifelse (d >= SS & d < FE, "Summer", "Fall")))
}

Function to get data manipulated

seasonweekdata<- function(data1,coordinates=coor){
  data1<-data1 %>% select("StartStation.Id","EndStation.Id","Start.Date")
  ###merge coordinate
  #########################################################################
  data1$season<- Season(data2 = bikedata)
  a<- coor
  colnames(a)<- c("StartStation.Id","s.lat","s.lon")
  x<-join(data1,a)
  aa<- coor
  colnames(aa)<- c("EndStation.Id","e.lat","e.lon")
  #a<-setnames(coor,old=c("id","lat","long"),new=c("EndStation.Id","e.lat","e.lon"))
  #aa<-setnames(coor,old=c("id","lat","long"),new=c("StartStation.Id","s.lat","s.lon"))
  z<-join(x,aa)
  head(z)
  z<- na.omit(z)
  x<- count(z,vars = c("StartStation.Id","EndStation.Id"))
  data1<- join(z,x)
  #################weekdays############################################################
  data1$weekdays<-weekdays(
    strptime(data1$Start.Date,format="%d/%m/%Y %H:%M",tz="UTC")
  )
  
  ########################################seasons
  head(data1)
  return(data1)
  ##########same start and end stations #########################################
  #attach(data1)
  # data1$samestation<- rep(0,nrow(data1))
  #head(data1)
  #data1$samestation[which((StartStation.Id==EndStation.Id))]<- data1$freq[which((StartStation.Id==EndStation.Id))]
}
str(seasonweekdata(data1 = bikedata))
## Joining by: StartStation.Id
## Joining by: EndStation.Id
## Joining by: StartStation.Id, EndStation.Id
## 'data.frame':    223507 obs. of  10 variables:
##  $ StartStation.Id: int  706 587 405 587 577 270 109 527 191 109 ...
##  $ EndStation.Id  : int  308 587 432 587 495 270 749 133 634 196 ...
##  $ Start.Date     : Factor w/ 9704 levels "21/06/2017 00:00",..: 1 1 1 1 1 2 2 2 2 2 ...
##  $ season         : chr  "Winter" "Winter" "Winter" "Winter" ...
##  $ s.lat          : num  51.5 51.5 51.5 51.5 51.5 ...
##  $ s.lon          : num  -0.0836 -0.085 -0.1827 -0.085 -0.0475 ...
##  $ e.lat          : num  51.5 51.5 51.5 51.5 51.5 ...
##  $ e.lon          : num  -0.0857 -0.085 -0.1739 -0.085 -0.0187 ...
##  $ freq           : int  3 5 6 5 3 1 3 4 2 1 ...
##  $ weekdays       : chr  "Wednesday" "Wednesday" "Wednesday" "Wednesday" ...

Function for plots

fullplot<- function(data,type="nothing", source="google",maptype="roadmap",zoom = 11,
                    lowcol="grey90",highcol="black"){
  
  map<- get_map(location = "London",source="google",maptype="roadmap",zoom = 11)
  
  plot<-ggmap(map)+
    geom_segment(data=data,aes(x=s.lon, y=s.lat, xend=e.lon, yend=e.lat, colour=freq),
    size=0.00001,alpha=0.3)+
    xlim(range(data$s.lon))+
    ylim(range(data$s.lat))+
    scale_color_gradient(low=lowcol,high=highcol)+
    geom_point(data=data,aes(x=s.lon,y=s.lat),size=0.001,alpha=0.3)
  
  if (type== "weekdays"){
    plot<- plot+ facet_wrap(~ weekdays)
  }
  else if ( type == "season"){
    attach(data)
    plot<- plot+ facet_wrap(~ season)
  }
  else{
    plot <- plot
  }
  
  plot
  
}
fullplot(data=seasonweekdata(data1=bikedata),lowcol = "grey90",highcol = "black")
## Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=London&zoom=11&size=640x640&scale=2&maptype=roadmap&language=en-EN&sensor=false
## Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=London&sensor=false
## Joining by: StartStation.Id
## Joining by: EndStation.Id
## Joining by: StartStation.Id, EndStation.Id
## Scale for 'x' is already present. Adding another scale for 'x', which
## will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which
## will replace the existing scale.

fullplot(data=seasonweekdata(data1=bikedata),lowcol = "wheat",highcol = "darkblue",type = "weekdays")
## Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=London&zoom=11&size=640x640&scale=2&maptype=roadmap&language=en-EN&sensor=false
## Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=London&sensor=false
## Joining by: StartStation.Id
## Joining by: EndStation.Id
## Joining by: StartStation.Id, EndStation.Id
## Scale for 'x' is already present. Adding another scale for 'x', which
## will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which
## will replace the existing scale.

fullplot(data=seasonweekdata(data1=bikedata),lowcol = "wheat",highcol = "black",type = "season")
## Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=London&zoom=11&size=640x640&scale=2&maptype=roadmap&language=en-EN&sensor=false
## Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=London&sensor=false
## Joining by: StartStation.Id
## Joining by: EndStation.Id
## Joining by: StartStation.Id, EndStation.Id
## Scale for 'x' is already present. Adding another scale for 'x', which
## will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which
## will replace the existing scale.