Tallying Data and Creating Pie Charts

setwd("/Users/Greg/Documents/Grad School/LAIS 609C/Assignment 1")

load("friends.RData")

t = table(friends$Friends);t
## 
## No difference  Opposite sex      Same sex 
##           602           434           164
prop = prop.table(t);prop
## 
## No difference  Opposite sex      Same sex 
##     0.5016667     0.3616667     0.1366667
percent=prop.table(t)*100;percent
## 
## No difference  Opposite sex      Same sex 
##      50.16667      36.16667      13.66667
pie(t)

pf = round(percent,1);pf
## 
## No difference  Opposite sex      Same sex 
##          50.2          36.2          13.7
lbl = paste(c("No difference","Opposite sex","Same sex"),pf,"%",sep="");lbl
## [1] "No difference50.2%" "Opposite sex36.2%"  "Same sex13.7%"
pie(t,label=lbl)

Creating and Describing Histograms

load("actor_2013.RData")

hist(actor_age$Age)

hist(actor_age$Age, xlab="Age of Best Actor Oscar Winners (1970-2013)", main="")

hist(actor_age$Age, xlab="Age of Best Actor Oscar Winners (1970-2013)", ylab="Number of Actors", main="Best Actor Oscar Winners Ages")

hist(actor_age$Age, breaks=8, xlab="Age of Best Actor Oscar Winners (1970-2013)", main="")

Interpreting the Five Number Summary

summary(actor_age$Age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   29.00   38.00   43.50   44.98   50.25   76.00
mean(actor_age$Age)
## [1] 44.97727
sd(actor_age$Age)
## [1] 9.749153
var(actor_age$Age)
## [1] 95.04598
median(actor_age$Age)
## [1] 43.5
IQR(actor_age$Age)
## [1] 12.25
min(actor_age$Age)
## [1] 29
max(actor_age$Age)
## [1] 76
length(actor_age$Age)
## [1] 44
quantile(actor_age$Age, 0.25)
## 25% 
##  38
quantile(actor_age$Age, 0.75)
##   75% 
## 50.25

Creating Side-by-Side Boxplots

load("graduation.RData")
grad_data
##   College.A College.B College.C College.D College.E College.F
## 1      57.6      70.1      54.5      80.1      71.3      68.8
## 2      43.2      69.6      55.6      77.3      62.6      61.0
## 3      49.6      67.3      56.9      74.7      54.5      57.7
## 4      51.4      76.7      71.0      79.2      57.5      66.4
## 5      69.9      69.4      73.3      84.6      55.0      75.2
## 6      69.9      72.6      74.8      78.8      67.0      87.4
## 7      73.8      70.2      68.3      84.1      60.0      86.0
## 8      72.3      74.4      67.0      74.1      58.3      79.7
summary(grad_data)
##    College.A       College.B       College.C       College.D    
##  Min.   :43.20   Min.   :67.30   Min.   :54.50   Min.   :74.10  
##  1st Qu.:50.95   1st Qu.:69.55   1st Qu.:56.58   1st Qu.:76.65  
##  Median :63.75   Median :70.15   Median :67.65   Median :79.00  
##  Mean   :60.96   Mean   :71.29   Mean   :65.17   Mean   :79.11  
##  3rd Qu.:70.50   3rd Qu.:73.05   3rd Qu.:71.58   3rd Qu.:81.10  
##  Max.   :73.80   Max.   :76.70   Max.   :74.80   Max.   :84.60  
##    College.E       College.F    
##  Min.   :54.50   Min.   :57.70  
##  1st Qu.:56.88   1st Qu.:65.05  
##  Median :59.15   Median :72.00  
##  Mean   :60.77   Mean   :72.78  
##  3rd Qu.:63.70   3rd Qu.:81.28  
##  Max.   :71.30   Max.   :87.40
boxplot(grad_data)

boxplot(grad_data, xlab="Colleges",ylab ="Graduation Rates", main="Comparison of Graduation Rates")

boxplot(grad_data, horizontal=TRUE, ylab="Colleges",xlab ="Graduation Rates", main="Comparison of Graduation Rates")

Calculating the Standard Deviation

load("sdintuition.RData")
sapply(ratings, sd)
##   Class.I  Class.II Class.III 
##  1.568929  4.000000  2.631174