This is an R Markdown document which contains the analysis of the Six Airlines Dataset.
setwd("D:/R Internship")
air_data<-read.csv(paste("SixAirlinesDataV2.csv",sep = ""))
View(air_data)
dim(air_data)
## [1] 458 18
summary(air_data)
## Airline Aircraft FlightDuration TravelMonth
## AirFrance: 74 AirBus:151 Min. : 1.250 Aug:127
## British :175 Boeing:307 1st Qu.: 4.260 Jul: 75
## Delta : 46 Median : 7.790 Oct:127
## Jet : 61 Mean : 7.578 Sep:129
## Singapore: 40 3rd Qu.:10.620
## Virgin : 62 Max. :14.660
## IsInternational SeatsEconomy SeatsPremium PitchEconomy
## Domestic : 40 Min. : 78.0 Min. : 8.00 Min. :30.00
## International:418 1st Qu.:133.0 1st Qu.:21.00 1st Qu.:31.00
## Median :185.0 Median :36.00 Median :31.00
## Mean :202.3 Mean :33.65 Mean :31.22
## 3rd Qu.:243.0 3rd Qu.:40.00 3rd Qu.:32.00
## Max. :389.0 Max. :66.00 Max. :33.00
## PitchPremium WidthEconomy WidthPremium PriceEconomy
## Min. :34.00 Min. :17.00 Min. :17.00 Min. : 65
## 1st Qu.:38.00 1st Qu.:18.00 1st Qu.:19.00 1st Qu.: 413
## Median :38.00 Median :18.00 Median :19.00 Median :1242
## Mean :37.91 Mean :17.84 Mean :19.47 Mean :1327
## 3rd Qu.:38.00 3rd Qu.:18.00 3rd Qu.:21.00 3rd Qu.:1909
## Max. :40.00 Max. :19.00 Max. :21.00 Max. :3593
## PricePremium PriceRelative SeatsTotal PitchDifference
## Min. : 86.0 Min. :0.0200 Min. : 98 Min. : 2.000
## 1st Qu.: 528.8 1st Qu.:0.1000 1st Qu.:166 1st Qu.: 6.000
## Median :1737.0 Median :0.3650 Median :227 Median : 7.000
## Mean :1845.3 Mean :0.4872 Mean :236 Mean : 6.688
## 3rd Qu.:2989.0 3rd Qu.:0.7400 3rd Qu.:279 3rd Qu.: 7.000
## Max. :7414.0 Max. :1.8900 Max. :441 Max. :10.000
## WidthDifference PercentPremiumSeats
## Min. :0.000 Min. : 4.71
## 1st Qu.:1.000 1st Qu.:12.28
## Median :1.000 Median :13.21
## Mean :1.633 Mean :14.65
## 3rd Qu.:3.000 3rd Qu.:15.36
## Max. :4.000 Max. :24.69
boxplot(PriceDifference~Airline,data = air_data,
main="Boxplot of Price Difference between Economy and Premium tickets by Airline",
xlab="Price Difference",ylab="Airline")
library(lattice)
## Warning: package 'lattice' was built under R version 3.3.3
price_airline<-aggregate(PriceDifference~Airline,data=air_data, mean)
price_airline
## Airline PriceDifference
## 1 AirFrance 295.4324
## 2 British 643.5486
## 3 Delta 123.7391
## 4 Jet 207.1967
## 5 Singapore 379.6750
## 6 Virgin 1118.1613
barchart(PriceDifference~Airline,data = price_airline, col="gray",
main="Bargraph of Price Difference Vs Airlines",
xlab="Airlines",ylab="Price Difference")
boxplot(PriceDifference~TravelMonth,data = air_data,
main="Boxplot of Price Difference between Economy and Premium tickets by Travel Month",xlab="Price Difference",ylab="Travel Month")
price_month<-aggregate(PriceDifference~TravelMonth,data=air_data, mean)
price_month
## TravelMonth PriceDifference
## 1 Aug 526.4646
## 2 Jul 462.9333
## 3 Oct 540.6850
## 4 Sep 519.9922
barchart(PriceDifference~TravelMonth,data = price_month, col="gray",
main="Bargraph of Price Difference Vs Travel Month",
xlab="Travel Month",ylab="Price Difference")
library(corrgram)
## Warning: package 'corrgram' was built under R version 3.3.3
corrgram(air_data,lower.panel = panel.shade
,upper.panel = panel.pie,text.panel = panel.txt
, main="Corrgram of Airlines data")
fit<-lm(PriceDifference~FlightDuration+PitchDifference+WidthDifference,data = air_data)
summary(fit)
##
## Call:
## lm(formula = PriceDifference ~ FlightDuration + PitchDifference +
## WidthDifference, data = air_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -859.4 -324.7 -62.7 150.1 3331.5
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -286.933 117.833 -2.435 0.0153 *
## FlightDuration 80.992 6.754 11.992 <2e-16 ***
## PitchDifference 10.387 20.779 0.500 0.6174
## WidthDifference 74.641 30.977 2.410 0.0164 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 506.1 on 454 degrees of freedom
## Multiple R-squared: 0.2538, Adjusted R-squared: 0.2489
## F-statistic: 51.48 on 3 and 454 DF, p-value: < 2.2e-16
cor.test(air_data$PriceDifference,air_data$FlightDuration)
##
## Pearson's product-moment correlation
##
## data: air_data$PriceDifference and air_data$FlightDuration
## t = 11.435, df = 456, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3976578 0.5403379
## sample estimates:
## cor
## 0.4720837
cor.test(air_data$PriceDifference,air_data$WidthDifference)
##
## Pearson's product-moment correlation
##
## data: air_data$PriceDifference and air_data$WidthDifference
## t = 2.5291, df = 456, p-value = 0.01177
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.02627012 0.20700978
## sample estimates:
## cor
## 0.1176138