airline.df<-read.csv(paste("SixAirlinesDataV2.csv"))
View(airline.df)
summary(airline.df)
## Airline Aircraft FlightDuration TravelMonth
## AirFrance: 74 AirBus:151 Min. : 1.250 Aug:127
## British :175 Boeing:307 1st Qu.: 4.260 Jul: 75
## Delta : 46 Median : 7.790 Oct:127
## Jet : 61 Mean : 7.578 Sep:129
## Singapore: 40 3rd Qu.:10.620
## Virgin : 62 Max. :14.660
## IsInternational SeatsEconomy SeatsPremium PitchEconomy
## Domestic : 40 Min. : 78.0 Min. : 8.00 Min. :30.00
## International:418 1st Qu.:133.0 1st Qu.:21.00 1st Qu.:31.00
## Median :185.0 Median :36.00 Median :31.00
## Mean :202.3 Mean :33.65 Mean :31.22
## 3rd Qu.:243.0 3rd Qu.:40.00 3rd Qu.:32.00
## Max. :389.0 Max. :66.00 Max. :33.00
## PitchPremium WidthEconomy WidthPremium PriceEconomy
## Min. :34.00 Min. :17.00 Min. :17.00 Min. : 65
## 1st Qu.:38.00 1st Qu.:18.00 1st Qu.:19.00 1st Qu.: 413
## Median :38.00 Median :18.00 Median :19.00 Median :1242
## Mean :37.91 Mean :17.84 Mean :19.47 Mean :1327
## 3rd Qu.:38.00 3rd Qu.:18.00 3rd Qu.:21.00 3rd Qu.:1909
## Max. :40.00 Max. :19.00 Max. :21.00 Max. :3593
## PricePremium PriceRelative SeatsTotal PitchDifference
## Min. : 86.0 Min. :0.0200 Min. : 98 Min. : 2.000
## 1st Qu.: 528.8 1st Qu.:0.1000 1st Qu.:166 1st Qu.: 6.000
## Median :1737.0 Median :0.3650 Median :227 Median : 7.000
## Mean :1845.3 Mean :0.4872 Mean :236 Mean : 6.688
## 3rd Qu.:2989.0 3rd Qu.:0.7400 3rd Qu.:279 3rd Qu.: 7.000
## Max. :7414.0 Max. :1.8900 Max. :441 Max. :10.000
## WidthDifference PercentPremiumSeats
## Min. :0.000 Min. : 4.71
## 1st Qu.:1.000 1st Qu.:12.28
## Median :1.000 Median :13.21
## Mean :1.633 Mean :14.65
## 3rd Qu.:3.000 3rd Qu.:15.36
## Max. :4.000 Max. :24.69
library(psych)
describe(airline.df)
## vars n mean sd median trimmed mad min
## Airline* 1 458 3.01 1.65 2.00 2.89 1.48 1.00
## Aircraft* 2 458 1.67 0.47 2.00 1.71 0.00 1.00
## FlightDuration 3 458 7.58 3.54 7.79 7.57 4.81 1.25
## TravelMonth* 4 458 2.56 1.17 3.00 2.58 1.48 1.00
## IsInternational* 5 458 1.91 0.28 2.00 2.00 0.00 1.00
## SeatsEconomy 6 458 202.31 76.37 185.00 194.64 85.99 78.00
## SeatsPremium 7 458 33.65 13.26 36.00 33.35 11.86 8.00
## PitchEconomy 8 458 31.22 0.66 31.00 31.26 0.00 30.00
## PitchPremium 9 458 37.91 1.31 38.00 38.05 0.00 34.00
## WidthEconomy 10 458 17.84 0.56 18.00 17.81 0.00 17.00
## WidthPremium 11 458 19.47 1.10 19.00 19.53 0.00 17.00
## PriceEconomy 12 458 1327.08 988.27 1242.00 1244.40 1159.39 65.00
## PricePremium 13 458 1845.26 1288.14 1737.00 1799.05 1845.84 86.00
## PriceRelative 14 458 0.49 0.45 0.36 0.42 0.41 0.02
## SeatsTotal 15 458 235.96 85.29 227.00 228.73 90.44 98.00
## PitchDifference 16 458 6.69 1.76 7.00 6.76 0.00 2.00
## WidthDifference 17 458 1.63 1.19 1.00 1.53 0.00 0.00
## PercentPremiumSeats 18 458 14.65 4.84 13.21 14.31 2.68 4.71
## max range skew kurtosis se
## Airline* 6.00 5.00 0.61 -0.95 0.08
## Aircraft* 2.00 1.00 -0.72 -1.48 0.02
## FlightDuration 14.66 13.41 -0.07 -1.12 0.17
## TravelMonth* 4.00 3.00 -0.14 -1.46 0.05
## IsInternational* 2.00 1.00 -2.91 6.50 0.01
## SeatsEconomy 389.00 311.00 0.72 -0.36 3.57
## SeatsPremium 66.00 58.00 0.23 -0.46 0.62
## PitchEconomy 33.00 3.00 -0.03 -0.35 0.03
## PitchPremium 40.00 6.00 -1.51 3.52 0.06
## WidthEconomy 19.00 2.00 -0.04 -0.08 0.03
## WidthPremium 21.00 4.00 -0.08 -0.31 0.05
## PriceEconomy 3593.00 3528.00 0.51 -0.88 46.18
## PricePremium 7414.00 7328.00 0.50 0.43 60.19
## PriceRelative 1.89 1.87 1.17 0.72 0.02
## SeatsTotal 441.00 343.00 0.70 -0.53 3.99
## PitchDifference 10.00 8.00 -0.54 1.78 0.08
## WidthDifference 4.00 4.00 0.84 -0.53 0.06
## PercentPremiumSeats 24.69 19.98 0.71 0.28 0.23
attach(airline.df)
Distribution of data for Flight Duration
boxplot(airline.df$FlightDuration, main="Boxplot-Flight duration",
xlab="Flight duration", col="maroon")
Comparison of number of seats in Premium and Economy
par(mfrow=c(1, 2))
boxplot(airline.df$SeatsEconomy, main="Boxplot-Seats Economy",
xlab="Seats Economy", col="maroon")
boxplot(airline.df$SeatsPremium, main="Boxplot-Seats Premium",
xlab="Seats Premium", col="dark blue")
Comparison of distance between Consecutive Economy and Premium Economy Seats
par(mfrow=c(1, 2))
hist(airline.df$PitchEconomy,xlab="Pitch Economy", col="maroon",
main="Histogram for Pitch Economy")
hist(airline.df$PitchPremium,xlab="Pitch Premium", col="dark blue",
main="Histogram for Pitch Premium")
Comparison of Width between armrests between Economy and Premium Economy Seats
par(mfrow=c(1, 2))
hist(airline.df$WidthEconomy, main="Histogram- Width Economy",
xlab="Width Economy", col="maroon")
hist(airline.df$WidthPremium, main="Boxplot-Width Premium",
xlab="Width Premium", col="dark blue")
Comparison of Prices of Economy and a Premium Economy Seat
par(mfrow=c(1, 2))
boxplot(airline.df$PriceEconomy, main="Boxplot-Seats Economy",
xlab="Prices", col="maroon")
boxplot(airline.df$PricePremium, main="Boxplot-Seats Premium",
xlab="Seats Premium", col="dark blue")
Number of International and Domestic Flights
library(lattice)
histogram(airline.df$IsInternational, main="Histogram- Number of International & Domestic Flights", xlab="International/Domestic", col="dark blue")
Comparison of Prices in various airlines
par(mfrow=c(2,1))
plot(PriceEconomy~Airline, data=airline.df, main="Prices in Economy seats", col=c("maroon","red","dark blue","green","purple","grey"))
plot(PricePremium~Airline, data=airline.df, main="Prices in Premium seats", col=c("maroon","red","dark blue","green", "purple","grey"))
Comparison between PriceRelative((PricePremium - PriceEconomy) / PriceEconomy) and SeatsTotal(SeatsEconomy + SeatsPremium)
library(car)
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
scatterplot(airline.df$PriceRelative,airline.df$SeatsTotal, main="Comparison of Price Relative and Seats Total",
xlab="Price Relative", ylab="Seats Total")
Comparison between WidthDifference(WidthPremium - WidthEconomy) and PriceRelative((PricePremium - PriceEconomy) / PriceEconomy)
scatterplot(airline.df$WidthDifference,airline.df$PriceRelative, main="Comparison of Price Relative and Width Difference",
xlab="Width", ylab="Price")
Comparison between PitchDifference(PitchPremium - PitchEconomy) and PriceRelative((PricePremium - PriceEconomy) / PriceEconomy)
scatterplot(airline.df$PitchDifference,airline.df$PriceRelative, main="Comparison of PriceRelative and Pitch Difference",
xlab = "Pitch", ylab="Price")
library(corrgram)
corrgram(airline.df, lower.panel=panel.shade,
upper.panel=panel.pie, text.panel=panel.txt,
main="Corrgram of Six Airlines Variables")
between PriceRelative((PricePremium - PriceEconomy) / PriceEconomy) and Flight Duration
cor.test(airline.df$PriceRelative, airline.df$FlightDuration)
##
## Pearson's product-moment correlation
##
## data: airline.df$PriceRelative and airline.df$FlightDuration
## t = 2.6046, df = 456, p-value = 0.009498
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.02977856 0.21036806
## sample estimates:
## cor
## 0.121075
between PitchDifference(PitchPremium - PitchEconomy) and PriceRelative ((PricePremium - PriceEconomy) / PriceEconomy)
cor.test(airline.df$PriceRelative, airline.df$PitchDifference)
##
## Pearson's product-moment correlation
##
## data: airline.df$PriceRelative and airline.df$PitchDifference
## t = 11.331, df = 456, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3940262 0.5372817
## sample estimates:
## cor
## 0.4687302
between WidthDifference(WidthPremium - WidthEconomy) and PriceRelative ((PricePremium - PriceEconomy) / PriceEconomy)
cor.test(airline.df$PriceRelative, airline.df$WidthDifference)
##
## Pearson's product-moment correlation
##
## data: airline.df$PriceRelative and airline.df$WidthDifference
## t = 11.869, df = 456, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4125388 0.5528218
## sample estimates:
## cor
## 0.4858024
rmodel=lm(PricePremium ~Airline+TravelMonth+FlightDuration+PitchDifference+WidthDifference+PercentPremiumSeats+PriceRelative,airline.df)
summary(rmodel)
##
## Call:
## lm(formula = PricePremium ~ Airline + TravelMonth + FlightDuration +
## PitchDifference + WidthDifference + PercentPremiumSeats +
## PriceRelative, data = airline.df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2216.1 -408.6 102.1 392.2 4277.1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 624.427 534.907 1.167 0.2437
## AirlineBritish -972.777 218.739 -4.447 1.10e-05 ***
## AirlineDelta -1133.805 265.671 -4.268 2.42e-05 ***
## AirlineJet -2497.060 241.586 -10.336 < 2e-16 ***
## AirlineSingapore -2077.175 166.680 -12.462 < 2e-16 ***
## AirlineVirgin -1026.230 210.448 -4.876 1.51e-06 ***
## TravelMonthJul 78.482 111.257 0.705 0.4809
## TravelMonthOct -39.008 94.984 -0.411 0.6815
## TravelMonthSep -4.181 94.494 -0.044 0.9647
## FlightDuration 187.775 12.780 14.693 < 2e-16 ***
## PitchDifference 25.189 116.907 0.215 0.8295
## WidthDifference 259.734 157.784 1.646 0.1004
## PercentPremiumSeats 15.601 9.352 1.668 0.0960 .
## PriceRelative 234.797 100.289 2.341 0.0197 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 755.4 on 444 degrees of freedom
## Multiple R-squared: 0.6658, Adjusted R-squared: 0.6561
## F-statistic: 68.05 on 13 and 444 DF, p-value: < 2.2e-16
The model is statistically significant because the p-value is less than 0.05
Through the tests and analysis we have have conducted we can infer that, the prize of Premium Economy tickets are higher than Economy tickets.
FlightDuration, WidthDifference, PitchDifference, Airline, PercentPremiumSeats are the factors that effect it.
There is a high correlation between Prices of Economy tickets,Premium Economy tickets and Duration of Flight.
Width Difference is the a bigger reason than Pitch Difference why Premium Economy tickets are prized high.