## Logistic Regression

# get summary statistics
data(Affairs, package="AER")
summary(Affairs)
##     affairs          gender         age         yearsmarried    children 
##  Min.   : 0.000   female:315   Min.   :17.50   Min.   : 0.125   no :171  
##  1st Qu.: 0.000   male  :286   1st Qu.:27.00   1st Qu.: 4.000   yes:430  
##  Median : 0.000                Median :32.00   Median : 7.000            
##  Mean   : 1.456                Mean   :32.49   Mean   : 8.178            
##  3rd Qu.: 0.000                3rd Qu.:37.00   3rd Qu.:15.000            
##  Max.   :12.000                Max.   :57.00   Max.   :15.000            
##  religiousness     education       occupation        rating     
##  Min.   :1.000   Min.   : 9.00   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:14.00   1st Qu.:3.000   1st Qu.:3.000  
##  Median :3.000   Median :16.00   Median :5.000   Median :4.000  
##  Mean   :3.116   Mean   :16.17   Mean   :4.195   Mean   :3.932  
##  3rd Qu.:4.000   3rd Qu.:18.00   3rd Qu.:6.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :20.00   Max.   :7.000   Max.   :5.000
table(Affairs$affairs)
## 
##   0   1   2   3   7  12 
## 451  34  17  19  42  38
# create binary outcome variable
Affairs$ynaffair[Affairs$affairs > 0] <- 1
Affairs$ynaffair[Affairs$affairs == 0] <- 0
Affairs$ynaffair <- factor(Affairs$ynaffair, 
                           levels=c(0,1),
                           labels=c("No","Yes"))
table(Affairs$ynaffair)
## 
##  No Yes 
## 451 150
# fit full model
fit.full <- glm(ynaffair ~ gender + age + yearsmarried + children + 
                  religiousness + education + occupation +rating,
                data=Affairs,family=binomial())
summary(fit.full)
## 
## Call:
## glm(formula = ynaffair ~ gender + age + yearsmarried + children + 
##     religiousness + education + occupation + rating, family = binomial(), 
##     data = Affairs)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.5713  -0.7499  -0.5690  -0.2539   2.5191  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    1.37726    0.88776   1.551 0.120807    
## gendermale     0.28029    0.23909   1.172 0.241083    
## age           -0.04426    0.01825  -2.425 0.015301 *  
## yearsmarried   0.09477    0.03221   2.942 0.003262 ** 
## childrenyes    0.39767    0.29151   1.364 0.172508    
## religiousness -0.32472    0.08975  -3.618 0.000297 ***
## education      0.02105    0.05051   0.417 0.676851    
## occupation     0.03092    0.07178   0.431 0.666630    
## rating        -0.46845    0.09091  -5.153 2.56e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 675.38  on 600  degrees of freedom
## Residual deviance: 609.51  on 592  degrees of freedom
## AIC: 627.51
## 
## Number of Fisher Scoring iterations: 4
# fit reduced model
fit.reduced <- glm(ynaffair ~ age + yearsmarried + religiousness + 
                     rating, data=Affairs, family=binomial())
summary(fit.reduced)
## 
## Call:
## glm(formula = ynaffair ~ age + yearsmarried + religiousness + 
##     rating, family = binomial(), data = Affairs)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6278  -0.7550  -0.5701  -0.2624   2.3998  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    1.93083    0.61032   3.164 0.001558 ** 
## age           -0.03527    0.01736  -2.032 0.042127 *  
## yearsmarried   0.10062    0.02921   3.445 0.000571 ***
## religiousness -0.32902    0.08945  -3.678 0.000235 ***
## rating        -0.46136    0.08884  -5.193 2.06e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 675.38  on 600  degrees of freedom
## Residual deviance: 615.36  on 596  degrees of freedom
## AIC: 625.36
## 
## Number of Fisher Scoring iterations: 4
# compare models
anova(fit.reduced, fit.full, test="Chisq")
## Analysis of Deviance Table
## 
## Model 1: ynaffair ~ age + yearsmarried + religiousness + rating
## Model 2: ynaffair ~ gender + age + yearsmarried + children + religiousness + 
##     education + occupation + rating
##   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1       596     615.36                     
## 2       592     609.51  4   5.8474   0.2108
# interpret coefficients
coef(fit.reduced)
##   (Intercept)           age  yearsmarried religiousness        rating 
##    1.93083017   -0.03527112    0.10062274   -0.32902386   -0.46136144
exp(coef(fit.reduced))
##   (Intercept)           age  yearsmarried religiousness        rating 
##     6.8952321     0.9653437     1.1058594     0.7196258     0.6304248
# calculate probability of extramariatal affair by marital ratings
testdata <- data.frame(rating = c(1, 2, 3, 4, 5),
                       age = mean(Affairs$age),
                       yearsmarried = mean(Affairs$yearsmarried),
                       religiousness = mean(Affairs$religiousness))
testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
testdata
##   rating      age yearsmarried religiousness      prob
## 1      1 32.48752     8.177696      3.116473 0.5302296
## 2      2 32.48752     8.177696      3.116473 0.4157377
## 3      3 32.48752     8.177696      3.116473 0.3096712
## 4      4 32.48752     8.177696      3.116473 0.2204547
## 5      5 32.48752     8.177696      3.116473 0.1513079
# calculate probabilites of extramariatal affair by age
testdata <- data.frame(rating = mean(Affairs$rating),
                       age = seq(17, 57, 10), 
                       yearsmarried = mean(Affairs$yearsmarried),
                       religiousness = mean(Affairs$religiousness))
testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
testdata
##    rating age yearsmarried religiousness      prob
## 1 3.93178  17     8.177696      3.116473 0.3350834
## 2 3.93178  27     8.177696      3.116473 0.2615373
## 3 3.93178  37     8.177696      3.116473 0.1992953
## 4 3.93178  47     8.177696      3.116473 0.1488796
## 5 3.93178  57     8.177696      3.116473 0.1094738
# evaluate overdispersion
fit <- glm(ynaffair ~ age + yearsmarried + religiousness +
             rating, family = binomial(), data = Affairs)
fit.od <- glm(ynaffair ~ age + yearsmarried + religiousness +
                rating, family = quasibinomial(), data = Affairs)
pchisq(summary(fit.od)$dispersion * fit$df.residual,  
       fit$df.residual, lower = F)
## [1] 0.340122
## Poisson Regression

# look at dataset
data(breslow.dat, package="robust")
names(breslow.dat)
##  [1] "ID"    "Y1"    "Y2"    "Y3"    "Y4"    "Base"  "Age"   "Trt"  
##  [9] "Ysum"  "sumY"  "Age10" "Base4"
summary(breslow.dat[c(6, 7, 8, 10)])
##       Base             Age               Trt          sumY       
##  Min.   :  6.00   Min.   :18.00   placebo  :28   Min.   :  0.00  
##  1st Qu.: 12.00   1st Qu.:23.00   progabide:31   1st Qu.: 11.50  
##  Median : 22.00   Median :28.00                  Median : 16.00  
##  Mean   : 31.22   Mean   :28.34                  Mean   : 33.05  
##  3rd Qu.: 41.00   3rd Qu.:32.00                  3rd Qu.: 36.00  
##  Max.   :151.00   Max.   :42.00                  Max.   :302.00
# plot distribution of post-treatment seizure counts
opar <- par(no.readonly=TRUE)
par(mfrow=c(1, 2))
attach(breslow.dat)
hist(sumY, breaks=20, xlab="Seizure Count", 
     main="Distribution of Seizures")
boxplot(sumY ~ Trt, xlab="Treatment", main="Group Comparisons")

par(opar)

# fit regression
fit <- glm(sumY ~ Base + Age + Trt, data=breslow.dat, family=poisson())
summary(fit)
## 
## Call:
## glm(formula = sumY ~ Base + Age + Trt, family = poisson(), data = breslow.dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -6.0569  -2.0433  -0.9397   0.7929  11.0061  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.9488259  0.1356191  14.370  < 2e-16 ***
## Base          0.0226517  0.0005093  44.476  < 2e-16 ***
## Age           0.0227401  0.0040240   5.651 1.59e-08 ***
## Trtprogabide -0.1527009  0.0478051  -3.194   0.0014 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 2122.73  on 58  degrees of freedom
## Residual deviance:  559.44  on 55  degrees of freedom
## AIC: 850.71
## 
## Number of Fisher Scoring iterations: 5
# interpret model parameters
coef(fit)
##  (Intercept)         Base          Age Trtprogabide 
##   1.94882593   0.02265174   0.02274013  -0.15270095
exp(coef(fit))
##  (Intercept)         Base          Age Trtprogabide 
##    7.0204403    1.0229102    1.0230007    0.8583864
# evaluate overdispersion
deviance(fit)/df.residual(fit)
## [1] 10.1717
library(qcc)
## Package 'qcc' version 2.7
## Type 'citation("qcc")' for citing this R package in publications.
qcc.overdispersion.test(breslow.dat$sumY, type="poisson")
##                    
## Overdispersion test Obs.Var/Theor.Var Statistic p-value
##        poisson data          62.87013  3646.468       0
# fit model with quasipoisson
fit.od <- glm(sumY ~ Base + Age + Trt, data=breslow.dat,
              family=quasipoisson())
summary(fit.od)
## 
## Call:
## glm(formula = sumY ~ Base + Age + Trt, family = quasipoisson(), 
##     data = breslow.dat)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -6.0569  -2.0433  -0.9397   0.7929  11.0061  
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.948826   0.465091   4.190 0.000102 ***
## Base          0.022652   0.001747  12.969  < 2e-16 ***
## Age           0.022740   0.013800   1.648 0.105085    
## Trtprogabide -0.152701   0.163943  -0.931 0.355702    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasipoisson family taken to be 11.76075)
## 
##     Null deviance: 2122.73  on 58  degrees of freedom
## Residual deviance:  559.44  on 55  degrees of freedom
## AIC: NA
## 
## Number of Fisher Scoring iterations: 5