sixAirlines <- read.csv(paste("SixAirlinesDataV2.csv", sep=""))
View(sixAirlines)
library(psych)
summary(sixAirlines)
##       Airline      Aircraft   FlightDuration   TravelMonth
##  AirFrance: 74   AirBus:151   Min.   : 1.250   Aug:127    
##  British  :175   Boeing:307   1st Qu.: 4.260   Jul: 75    
##  Delta    : 46                Median : 7.790   Oct:127    
##  Jet      : 61                Mean   : 7.578   Sep:129    
##  Singapore: 40                3rd Qu.:10.620              
##  Virgin   : 62                Max.   :14.660              
##       IsInternational  SeatsEconomy    SeatsPremium    PitchEconomy  
##  Domestic     : 40    Min.   : 78.0   Min.   : 8.00   Min.   :30.00  
##  International:418    1st Qu.:133.0   1st Qu.:21.00   1st Qu.:31.00  
##                       Median :185.0   Median :36.00   Median :31.00  
##                       Mean   :202.3   Mean   :33.65   Mean   :31.22  
##                       3rd Qu.:243.0   3rd Qu.:40.00   3rd Qu.:32.00  
##                       Max.   :389.0   Max.   :66.00   Max.   :33.00  
##   PitchPremium    WidthEconomy    WidthPremium    PriceEconomy 
##  Min.   :34.00   Min.   :17.00   Min.   :17.00   Min.   :  65  
##  1st Qu.:38.00   1st Qu.:18.00   1st Qu.:19.00   1st Qu.: 413  
##  Median :38.00   Median :18.00   Median :19.00   Median :1242  
##  Mean   :37.91   Mean   :17.84   Mean   :19.47   Mean   :1327  
##  3rd Qu.:38.00   3rd Qu.:18.00   3rd Qu.:21.00   3rd Qu.:1909  
##  Max.   :40.00   Max.   :19.00   Max.   :21.00   Max.   :3593  
##   PricePremium    PriceRelative      SeatsTotal  PitchDifference 
##  Min.   :  86.0   Min.   :0.0200   Min.   : 98   Min.   : 2.000  
##  1st Qu.: 528.8   1st Qu.:0.1000   1st Qu.:166   1st Qu.: 6.000  
##  Median :1737.0   Median :0.3650   Median :227   Median : 7.000  
##  Mean   :1845.3   Mean   :0.4872   Mean   :236   Mean   : 6.688  
##  3rd Qu.:2989.0   3rd Qu.:0.7400   3rd Qu.:279   3rd Qu.: 7.000  
##  Max.   :7414.0   Max.   :1.8900   Max.   :441   Max.   :10.000  
##  WidthDifference PercentPremiumSeats
##  Min.   :0.000   Min.   : 4.71      
##  1st Qu.:1.000   1st Qu.:12.28      
##  Median :1.000   Median :13.21      
##  Mean   :1.633   Mean   :14.65      
##  3rd Qu.:3.000   3rd Qu.:15.36      
##  Max.   :4.000   Max.   :24.69
describe(sixAirlines)
##                     vars   n    mean      sd  median trimmed     mad   min
## Airline*               1 458    3.01    1.65    2.00    2.89    1.48  1.00
## Aircraft*              2 458    1.67    0.47    2.00    1.71    0.00  1.00
## FlightDuration         3 458    7.58    3.54    7.79    7.57    4.81  1.25
## TravelMonth*           4 458    2.56    1.17    3.00    2.58    1.48  1.00
## IsInternational*       5 458    1.91    0.28    2.00    2.00    0.00  1.00
## SeatsEconomy           6 458  202.31   76.37  185.00  194.64   85.99 78.00
## SeatsPremium           7 458   33.65   13.26   36.00   33.35   11.86  8.00
## PitchEconomy           8 458   31.22    0.66   31.00   31.26    0.00 30.00
## PitchPremium           9 458   37.91    1.31   38.00   38.05    0.00 34.00
## WidthEconomy          10 458   17.84    0.56   18.00   17.81    0.00 17.00
## WidthPremium          11 458   19.47    1.10   19.00   19.53    0.00 17.00
## PriceEconomy          12 458 1327.08  988.27 1242.00 1244.40 1159.39 65.00
## PricePremium          13 458 1845.26 1288.14 1737.00 1799.05 1845.84 86.00
## PriceRelative         14 458    0.49    0.45    0.36    0.42    0.41  0.02
## SeatsTotal            15 458  235.96   85.29  227.00  228.73   90.44 98.00
## PitchDifference       16 458    6.69    1.76    7.00    6.76    0.00  2.00
## WidthDifference       17 458    1.63    1.19    1.00    1.53    0.00  0.00
## PercentPremiumSeats   18 458   14.65    4.84   13.21   14.31    2.68  4.71
##                         max   range  skew kurtosis    se
## Airline*               6.00    5.00  0.61    -0.95  0.08
## Aircraft*              2.00    1.00 -0.72    -1.48  0.02
## FlightDuration        14.66   13.41 -0.07    -1.12  0.17
## TravelMonth*           4.00    3.00 -0.14    -1.46  0.05
## IsInternational*       2.00    1.00 -2.91     6.50  0.01
## SeatsEconomy         389.00  311.00  0.72    -0.36  3.57
## SeatsPremium          66.00   58.00  0.23    -0.46  0.62
## PitchEconomy          33.00    3.00 -0.03    -0.35  0.03
## PitchPremium          40.00    6.00 -1.51     3.52  0.06
## WidthEconomy          19.00    2.00 -0.04    -0.08  0.03
## WidthPremium          21.00    4.00 -0.08    -0.31  0.05
## PriceEconomy        3593.00 3528.00  0.51    -0.88 46.18
## PricePremium        7414.00 7328.00  0.50     0.43 60.19
## PriceRelative          1.89    1.87  1.17     0.72  0.02
## SeatsTotal           441.00  343.00  0.70    -0.53  3.99
## PitchDifference       10.00    8.00 -0.54     1.78  0.08
## WidthDifference        4.00    4.00  0.84    -0.53  0.06
## PercentPremiumSeats   24.69   19.98  0.71     0.28  0.23
library(corrplot)
## corrplot 0.84 loaded
library(corrgram)
str(sixAirlines)
## 'data.frame':    458 obs. of  18 variables:
##  $ Airline            : Factor w/ 6 levels "AirFrance","British",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ Aircraft           : Factor w/ 2 levels "AirBus","Boeing": 2 2 2 2 2 2 2 2 2 2 ...
##  $ FlightDuration     : num  12.25 12.25 12.25 12.25 8.16 ...
##  $ TravelMonth        : Factor w/ 4 levels "Aug","Jul","Oct",..: 2 1 4 3 1 4 3 1 4 4 ...
##  $ IsInternational    : Factor w/ 2 levels "Domestic","International": 2 2 2 2 2 2 2 2 2 2 ...
##  $ SeatsEconomy       : int  122 122 122 122 122 122 122 122 122 122 ...
##  $ SeatsPremium       : int  40 40 40 40 40 40 40 40 40 40 ...
##  $ PitchEconomy       : int  31 31 31 31 31 31 31 31 31 31 ...
##  $ PitchPremium       : int  38 38 38 38 38 38 38 38 38 38 ...
##  $ WidthEconomy       : int  18 18 18 18 18 18 18 18 18 18 ...
##  $ WidthPremium       : int  19 19 19 19 19 19 19 19 19 19 ...
##  $ PriceEconomy       : int  2707 2707 2707 2707 1793 1793 1793 1476 1476 1705 ...
##  $ PricePremium       : int  3725 3725 3725 3725 2999 2999 2999 2997 2997 2989 ...
##  $ PriceRelative      : num  0.38 0.38 0.38 0.38 0.67 0.67 0.67 1.03 1.03 0.75 ...
##  $ SeatsTotal         : int  162 162 162 162 162 162 162 162 162 162 ...
##  $ PitchDifference    : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ WidthDifference    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ PercentPremiumSeats: num  24.7 24.7 24.7 24.7 24.7 ...
boxplot(sixAirlines$SeatsEconomy, xlab= "Seats Economy", ylab = "Seats Economy", main= "Seats Economy distribution", horizontal = TRUE)

boxplot(sixAirlines$SeatsPremium, xlab= "Seats Premium", ylab = "Seats Premium", main= "Seats Premium distribution", horizontal = TRUE)

boxplot(sixAirlines$PitchEconomy, xlab= "Pitch Economy", ylab = "Pitch Economy", main= "Pitch Economy distribution", horizontal = TRUE)

boxplot(sixAirlines$PitchPremium, xlab= "PitchPremium", ylab = "PitchPremium", main= "PitchPremium distribution", horizontal = TRUE)

boxplot(sixAirlines$WidthEconomy, xlab= "WidthEconomy", ylab = "WidthEconomy", main= "WidthEconomy distribution", horizontal = TRUE)

boxplot(sixAirlines$WidthPremium, xlab= "WidthPremium", ylab = "WidthPremium", main= "WidthPremium distribution", horizontal = TRUE)

boxplot(sixAirlines$PriceEconomy, xlab= "PriceEconomy", ylab = "PriceEconomy", main= "PriceEconomy distribution", horizontal = TRUE)

boxplot(sixAirlines$PricePremium , xlab= "PricePremium ", ylab = "PricePremium ", main= "PricePremium  distribution", horizontal = TRUE)

boxplot(sixAirlines$PriceRelative, xlab= "PriceRelative", ylab = "PriceRelative", main= "PriceRelative distribution", horizontal = TRUE)

boxplot(sixAirlines$SeatsTotal, xlab= "SeatsTotal", ylab = "SeatsTotal", main= "SeatsTotal distribution", horizontal = TRUE)

boxplot(sixAirlines$PitchDifference, xlab= "PitchDifference", ylab = "PitchDifference", main= "PitchDifference distribution", horizontal = TRUE)

boxplot(sixAirlines$WidthDifference, xlab= "WidthDifference", ylab = "WidthDifference", main= "WidthDifference distribution", horizontal = TRUE)

boxplot(sixAirlines$PercentPremiumSeats, xlab= "PercentPremiumSeats", ylab = "PercentPremiumSeats", main= "PercentPremiumSeats distribution", horizontal = TRUE)

plot(x=sixAirlines$SeatsEconomy,y=sixAirlines$PitchEconomy, xlab= "Seats Economy", ylab = "Pitch Economy")

plot(x=sixAirlines$SeatsPremium,y=sixAirlines$PitchPremium, xlab= "Seats Premium", ylab = "Pitch Premium")

plot(x=sixAirlines$SeatsEconomy,y=sixAirlines$WidthEconomy, xlab= "Seats Economy", ylab = "Width Economy")

plot(x=sixAirlines$SeatsPremium,y=sixAirlines$WidthPremium, xlab= "Seats Premium", ylab = "Width Premmium")

plot(x=sixAirlines$PitchEconomy,y=sixAirlines$PriceEconomy, xlab= "Pitch Economy", ylab = "Price Economy")

plot(x=sixAirlines$PitchPremium,y=sixAirlines$PricePremium, xlab= "Pitch Premium", ylab = "Price Premium")

plot(x=sixAirlines$WidthEconomy,y=sixAirlines$PriceEconomy, xlab= "Width Economy", ylab = "Price Economy")

plot(x=sixAirlines$WidthPremium,y=sixAirlines$PricePremium, xlab= "Width Premium", ylab = "Price Premium")

plot(x=sixAirlines$PitchDifference,y=sixAirlines$PriceRelative, xlab= "Pitch Difference", ylab = "Price Relative")

plot(x=sixAirlines$WidthDifference,y=sixAirlines$PriceRelative, xlab= "Width Difference", ylab = "Price Relative")

plot(x=sixAirlines$PercentPremiumSeats,y=sixAirlines$PriceRelative, xlab= "Percent premium Seats", ylab = "Price Relative")

library(corrplot)
library(corrgram)
mytable <- sixAirlines[,6:18]
cov(mytable)
##                      SeatsEconomy  SeatsPremium PitchEconomy PitchPremium
## SeatsEconomy         5832.9154300  633.07060954    7.2117665  11.96373253
## SeatsPremium          633.0706095  175.86521648   -0.2972586   0.08508595
## PitchEconomy            7.2117665   -0.29725856    0.4292471  -0.47398546
## PitchPremium           11.9637325    0.08508595   -0.4739855   1.72639580
## WidthEconomy           15.9105138    3.36977440    0.1075650  -0.01739081
## WidthPremium            8.5832800   -0.03954019   -0.3876621   1.08157435
## PriceEconomy         9673.7944684 1489.38359627  238.7031905  65.42513354
## PricePremium        17413.2541733 3717.36428960  190.8517195 149.85356368
## PriceRelative           0.1361699   -0.58078765   -0.1248808   0.24719874
## SeatsTotal           6465.9860396  808.93582602    6.9145079  12.04881848
## PitchDifference         4.7519660    0.38234451   -0.9032326   2.20038126
## WidthDifference        -7.3272338   -3.40931459   -0.4952271   1.09896515
## PercentPremiumSeats  -122.3914537   31.14753127   -0.3261739  -1.11655834
##                     WidthEconomy WidthPremium  PriceEconomy  PricePremium
## SeatsEconomy         15.91051379   8.58327998    9673.79447   17413.25417
## SeatsPremium          3.36977440  -0.03954019    1489.38360    3717.36429
## PitchEconomy          0.10756500  -0.38766208     238.70319     190.85172
## PitchPremium         -0.01739081   1.08157435      65.42513     149.85356
## WidthEconomy          0.31081765   0.05010845      37.46095     108.11612
## WidthPremium          0.05010845   1.20378776     -61.85450      90.47998
## PriceEconomy         37.46095191 -61.85450011  976684.06198 1147494.76801
## PricePremium        108.11611707  90.47997668 1147494.76801 1659293.11947
## PriceRelative        -0.01104335   0.24928593    -128.49992      18.48429
## SeatsTotal           19.28028819   8.54373979   11163.17806   21130.61846
## PitchDifference      -0.12495581   1.46923643    -173.27806     -40.99816
## WidthDifference      -0.26070920   1.15367930     -99.31545     -17.63614
## PercentPremiumSeats   0.61321816  -0.97393787     312.61077     726.01582
##                     PriceRelative    SeatsTotal PitchDifference
## SeatsEconomy           0.13616991  6465.9860396       4.7519660
## SeatsPremium          -0.58078765   808.9358260       0.3823445
## PitchEconomy          -0.12488080     6.9145079      -0.9032326
## PitchPremium           0.24719874    12.0488185       2.2003813
## WidthEconomy          -0.01104335    19.2802882      -0.1249558
## WidthPremium           0.24928593     8.5437398       1.4692364
## PriceEconomy        -128.49991725 11163.1780647    -173.2780570
## PricePremium          18.48428836 21130.6184629     -40.9981558
## PriceRelative          0.20302893    -0.4446177       0.3720795
## SeatsTotal            -0.44461774  7274.9218656       5.1343105
## PitchDifference        0.37207954     5.1343105       3.1036138
## WidthDifference        0.26032928   -10.7365484       1.5941922
## PercentPremiumSeats   -0.35252750   -91.2439224      -0.7903844
##                     WidthDifference PercentPremiumSeats
## SeatsEconomy             -7.3272338        -122.3914537
## SeatsPremium             -3.4093146          31.1475313
## PitchEconomy             -0.4952271          -0.3261739
## PitchPremium              1.0989652          -1.1165583
## WidthEconomy             -0.2607092           0.6132182
## WidthPremium              1.1536793          -0.9739379
## PriceEconomy            -99.3154520         312.6107669
## PricePremium            -17.6361404         726.0158229
## PriceRelative             0.2603293          -0.3525275
## SeatsTotal              -10.7365484         -91.2439224
## PitchDifference           1.5941922          -0.7903844
## WidthDifference           1.4143885          -1.5871560
## PercentPremiumSeats      -1.5871560          23.4493343
cor(mytable)
##                     SeatsEconomy SeatsPremium PitchEconomy PitchPremium
## SeatsEconomy         1.000000000  0.625056587   0.14412692  0.119221250
## SeatsPremium         0.625056587  1.000000000  -0.03421296  0.004883123
## PitchEconomy         0.144126924 -0.034212963   1.00000000 -0.550606241
## PitchPremium         0.119221250  0.004883123  -0.55060624  1.000000000
## WidthEconomy         0.373670252  0.455782883   0.29448586 -0.023740873
## WidthPremium         0.102431959 -0.002717527  -0.53929285  0.750259029
## PriceEconomy         0.128167220  0.113642176   0.36866123  0.050384550
## PricePremium         0.177000928  0.217612376   0.22614179  0.088539147
## PriceRelative        0.003956939 -0.097196009  -0.42302204  0.417539056
## SeatsTotal           0.992607966  0.715171053   0.12373524  0.107512784
## PitchDifference      0.035318044  0.016365566  -0.78254993  0.950591466
## WidthDifference     -0.080670148 -0.216168666  -0.63557430  0.703281797
## PercentPremiumSeats -0.330935223  0.485029771  -0.10280880 -0.175487414
##                     WidthEconomy WidthPremium PriceEconomy PricePremium
## SeatsEconomy          0.37367025  0.102431959   0.12816722   0.17700093
## SeatsPremium          0.45578288 -0.002717527   0.11364218   0.21761238
## PitchEconomy          0.29448586 -0.539292852   0.36866123   0.22614179
## PitchPremium         -0.02374087  0.750259029   0.05038455   0.08853915
## WidthEconomy          1.00000000  0.081918728   0.06799061   0.15054837
## WidthPremium          0.08191873  1.000000000  -0.05704522   0.06402004
## PriceEconomy          0.06799061 -0.057045224   1.00000000   0.90138870
## PricePremium          0.15054837  0.064020043   0.90138870   1.00000000
## PriceRelative        -0.04396116  0.504247591  -0.28856711   0.03184654
## SeatsTotal            0.40545860  0.091297500   0.13243313   0.19232533
## PitchDifference      -0.12722421  0.760121272  -0.09952511  -0.01806629
## WidthDifference      -0.39320512  0.884149655  -0.08449975  -0.01151218
## PercentPremiumSeats   0.22714172 -0.183312058   0.06532232   0.11639097
##                     PriceRelative  SeatsTotal PitchDifference
## SeatsEconomy          0.003956939  0.99260797      0.03531804
## SeatsPremium         -0.097196009  0.71517105      0.01636557
## PitchEconomy         -0.423022038  0.12373524     -0.78254993
## PitchPremium          0.417539056  0.10751278      0.95059147
## WidthEconomy         -0.043961160  0.40545860     -0.12722421
## WidthPremium          0.504247591  0.09129750      0.76012127
## PriceEconomy         -0.288567110  0.13243313     -0.09952511
## PricePremium          0.031846537  0.19232533     -0.01806629
## PriceRelative         1.000000000 -0.01156894      0.46873025
## SeatsTotal           -0.011568942  1.00000000      0.03416915
## PitchDifference       0.468730249  0.03416915      1.00000000
## WidthDifference       0.485802437 -0.10584398      0.76089108
## PercentPremiumSeats  -0.161565556 -0.22091465     -0.09264869
##                     WidthDifference PercentPremiumSeats
## SeatsEconomy            -0.08067015         -0.33093522
## SeatsPremium            -0.21616867          0.48502977
## PitchEconomy            -0.63557430         -0.10280880
## PitchPremium             0.70328180         -0.17548741
## WidthEconomy            -0.39320512          0.22714172
## WidthPremium             0.88414965         -0.18331206
## PriceEconomy            -0.08449975          0.06532232
## PricePremium            -0.01151218          0.11639097
## PriceRelative            0.48580244         -0.16156556
## SeatsTotal              -0.10584398         -0.22091465
## PitchDifference          0.76089108         -0.09264869
## WidthDifference          1.00000000         -0.27559416
## PercentPremiumSeats     -0.27559416          1.00000000
corr.test(mytable, use= "complete")
## Call:corr.test(x = mytable, use = "complete")
## Correlation matrix 
##                     SeatsEconomy SeatsPremium PitchEconomy PitchPremium
## SeatsEconomy                1.00         0.63         0.14         0.12
## SeatsPremium                0.63         1.00        -0.03         0.00
## PitchEconomy                0.14        -0.03         1.00        -0.55
## PitchPremium                0.12         0.00        -0.55         1.00
## WidthEconomy                0.37         0.46         0.29        -0.02
## WidthPremium                0.10         0.00        -0.54         0.75
## PriceEconomy                0.13         0.11         0.37         0.05
## PricePremium                0.18         0.22         0.23         0.09
## PriceRelative               0.00        -0.10        -0.42         0.42
## SeatsTotal                  0.99         0.72         0.12         0.11
## PitchDifference             0.04         0.02        -0.78         0.95
## WidthDifference            -0.08        -0.22        -0.64         0.70
## PercentPremiumSeats        -0.33         0.49        -0.10        -0.18
##                     WidthEconomy WidthPremium PriceEconomy PricePremium
## SeatsEconomy                0.37         0.10         0.13         0.18
## SeatsPremium                0.46         0.00         0.11         0.22
## PitchEconomy                0.29        -0.54         0.37         0.23
## PitchPremium               -0.02         0.75         0.05         0.09
## WidthEconomy                1.00         0.08         0.07         0.15
## WidthPremium                0.08         1.00        -0.06         0.06
## PriceEconomy                0.07        -0.06         1.00         0.90
## PricePremium                0.15         0.06         0.90         1.00
## PriceRelative              -0.04         0.50        -0.29         0.03
## SeatsTotal                  0.41         0.09         0.13         0.19
## PitchDifference            -0.13         0.76        -0.10        -0.02
## WidthDifference            -0.39         0.88        -0.08        -0.01
## PercentPremiumSeats         0.23        -0.18         0.07         0.12
##                     PriceRelative SeatsTotal PitchDifference
## SeatsEconomy                 0.00       0.99            0.04
## SeatsPremium                -0.10       0.72            0.02
## PitchEconomy                -0.42       0.12           -0.78
## PitchPremium                 0.42       0.11            0.95
## WidthEconomy                -0.04       0.41           -0.13
## WidthPremium                 0.50       0.09            0.76
## PriceEconomy                -0.29       0.13           -0.10
## PricePremium                 0.03       0.19           -0.02
## PriceRelative                1.00      -0.01            0.47
## SeatsTotal                  -0.01       1.00            0.03
## PitchDifference              0.47       0.03            1.00
## WidthDifference              0.49      -0.11            0.76
## PercentPremiumSeats         -0.16      -0.22           -0.09
##                     WidthDifference PercentPremiumSeats
## SeatsEconomy                  -0.08               -0.33
## SeatsPremium                  -0.22                0.49
## PitchEconomy                  -0.64               -0.10
## PitchPremium                   0.70               -0.18
## WidthEconomy                  -0.39                0.23
## WidthPremium                   0.88               -0.18
## PriceEconomy                  -0.08                0.07
## PricePremium                  -0.01                0.12
## PriceRelative                  0.49               -0.16
## SeatsTotal                    -0.11               -0.22
## PitchDifference                0.76               -0.09
## WidthDifference                1.00               -0.28
## PercentPremiumSeats           -0.28                1.00
## Sample Size 
## [1] 458
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##                     SeatsEconomy SeatsPremium PitchEconomy PitchPremium
## SeatsEconomy                0.00         0.00         0.08         0.35
## SeatsPremium                0.00         0.00         1.00         1.00
## PitchEconomy                0.00         0.47         0.00         0.00
## PitchPremium                0.01         0.92         0.00         0.00
## WidthEconomy                0.00         0.00         0.00         0.61
## WidthPremium                0.03         0.95         0.00         0.00
## PriceEconomy                0.01         0.01         0.00         0.28
## PricePremium                0.00         0.00         0.00         0.06
## PriceRelative               0.93         0.04         0.00         0.00
## SeatsTotal                  0.00         0.00         0.01         0.02
## PitchDifference             0.45         0.73         0.00         0.00
## WidthDifference             0.08         0.00         0.00         0.00
## PercentPremiumSeats         0.00         0.00         0.03         0.00
##                     WidthEconomy WidthPremium PriceEconomy PricePremium
## SeatsEconomy                0.00         0.78         0.22         0.01
## SeatsPremium                0.00         1.00         0.46         0.00
## PitchEconomy                0.00         0.00         0.00         0.00
## PitchPremium                1.00         0.00         1.00         1.00
## WidthEconomy                0.00         1.00         1.00         0.05
## WidthPremium                0.08         0.00         1.00         1.00
## PriceEconomy                0.15         0.22         0.00         0.00
## PricePremium                0.00         0.17         0.00         0.00
## PriceRelative               0.35         0.00         0.00         0.50
## SeatsTotal                  0.00         0.05         0.00         0.00
## PitchDifference             0.01         0.00         0.03         0.70
## WidthDifference             0.00         0.00         0.07         0.81
## PercentPremiumSeats         0.00         0.00         0.16         0.01
##                     PriceRelative SeatsTotal PitchDifference
## SeatsEconomy                 1.00       0.00            1.00
## SeatsPremium                 0.94       0.00            1.00
## PitchEconomy                 0.00       0.27            0.00
## PitchPremium                 0.00       0.64            0.00
## WidthEconomy                 1.00       0.00            0.22
## WidthPremium                 0.00       1.00            0.00
## PriceEconomy                 0.00       0.17            0.86
## PricePremium                 1.00       0.00            1.00
## PriceRelative                0.00       1.00            0.00
## SeatsTotal                   0.80       0.00            1.00
## PitchDifference              0.00       0.47            0.00
## WidthDifference              0.00       0.02            0.00
## PercentPremiumSeats          0.00       0.00            0.05
##                     WidthDifference PercentPremiumSeats
## SeatsEconomy                   1.00                0.00
## SeatsPremium                   0.00                0.00
## PitchEconomy                   0.00                0.78
## PitchPremium                   0.00                0.01
## WidthEconomy                   0.00                0.00
## WidthPremium                   0.00                0.00
## PriceEconomy                   1.00                1.00
## PricePremium                   1.00                0.41
## PriceRelative                  0.00                0.02
## SeatsTotal                     0.68                0.00
## PitchDifference                0.00                1.00
## WidthDifference                0.00                0.00
## PercentPremiumSeats            0.00                0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
corrgram(mytable, order= TRUE, lower.panel = panel.shade, upper.panel=panel.pie, text.panel = panel.txt,main="Corrgram of sixAirlines intercorrelation")

H1: There is greater relative difference between the Economy and Premium class, in International flight vs that of domestic flights.

So the null-hypothesis is: There is no significant difference between the relative price of Economy class and premium class in case of International flights vs that of Domestic flights.

t.test(PriceRelative ~ IsInternational , data= sixAirlines)
## 
##  Welch Two Sample t-test
## 
## data:  PriceRelative by IsInternational
## t = -19.451, df = 446.12, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.4855215 -0.3964139
## sample estimates:
##      mean in group Domestic mean in group International 
##                   0.0847500                   0.5257177

As p is less than 0.05, we reject the null hypothesis, and say that indeed,“There is greater relative difference between the Economy and Premium class, in International flight vs that of domestic flights”.

Null hypothesis: There is no significant difference between the Economy seat price in case of Beoing vs Airbus aircrafts.

t.test(PriceEconomy ~ Aircraft, data= sixAirlines)
## 
##  Welch Two Sample t-test
## 
## data:  PriceEconomy by Aircraft
## t = 0.64317, df = 289.45, p-value = 0.5206
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -131.7801  259.7135
## sample estimates:
## mean in group AirBus mean in group Boeing 
##             1369.954             1305.987

As the value of p > 0.05, we cannot reject the null hpothesis.And we say that, there is no significant difference between the Economy seat price in case of Beoing vs Airbus aircrafts.

Null hypothesis: There is no significant difference between the Premium seat price in case of Beoing vs Airbus aircrafts.

t.test(PricePremium ~ Aircraft, data= sixAirlines)
## 
##  Welch Two Sample t-test
## 
## data:  PricePremium by Aircraft
## t = 0.28645, df = 310.38, p-value = 0.7747
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -212.2929  284.6350
## sample estimates:
## mean in group AirBus mean in group Boeing 
##             1869.503             1833.332

As the value of p > 0.05, we cannot reject the null hpothesis.And we say that, there is no significant difference between the premium seat price in case of Beoing vs Airbus aircrafts.

Null hypothesis: There is no significant difference between the PriceRelative in case of Beoing vs Airbus aircrafts.

t.test(PriceRelative ~ Aircraft, data= sixAirlines)
## 
##  Welch Two Sample t-test
## 
## data:  PriceRelative by Aircraft
## t = -2.6145, df = 363.72, p-value = 0.009306
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.18934647 -0.02678486
## sample estimates:
## mean in group AirBus mean in group Boeing 
##            0.4147682            0.5228339

As the value of p < 0.05, we reject the null hpothesis.And we say that, there is a significant difference between the PriceRelative in case of Beoing vs Airbus aircrafts.

model <- lm(PriceEconomy ~ SeatsEconomy + PitchEconomy + WidthEconomy, data = mytable)
summary(model)
## 
## Call:
## lm(formula = PriceEconomy ~ SeatsEconomy + PitchEconomy + WidthEconomy, 
##     data = mytable)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2209.23  -762.84   -39.25   727.96  1922.01 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1.414e+04  2.250e+03  -6.283 7.79e-10 ***
## SeatsEconomy  1.352e+00  6.051e-01   2.234   0.0260 *  
## PitchEconomy  5.700e+02  6.846e+01   8.325 1.00e-15 ***
## WidthEconomy -1.459e+02  8.584e+01  -1.700   0.0898 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 915.7 on 454 degrees of freedom
## Multiple R-squared:  0.1471, Adjusted R-squared:  0.1415 
## F-statistic:  26.1 on 3 and 454 DF,  p-value: 1.366e-15

Inference: The width between the seats decreases the price of an economoy seat, this is because more the width, lesser the number of seats in the airplane for this class, and hence lesser the priceEconomy achievable.

model <- lm(PricePremium~ SeatsPremium + PitchPremium + WidthPremium, data = mytable)
summary(model)
## 
## Call:
## lm(formula = PricePremium ~ SeatsPremium + PitchPremium + WidthPremium, 
##     data = mytable)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2219.2  -936.9  -120.4  1078.6  5762.8 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -2127.171   1736.937  -1.225    0.221    
## SeatsPremium    21.095      4.432   4.760 2.61e-06 ***
## PitchPremium    87.481     67.656   1.293    0.197    
## WidthPremium    -2.744     81.021  -0.034    0.973    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1256 on 454 degrees of freedom
## Multiple R-squared:  0.05501,    Adjusted R-squared:  0.04877 
## F-statistic: 8.809 on 3 and 454 DF,  p-value: 1.094e-05

Inference: The width between the seats decreases the price of an Premium seat, this is because more the width, lesser the number of seats in the airplane for this class, and hence lesser the pricePremium achievable.The effect is more pronounced in Premium class as compared to the economy class.

model <- lm(PriceRelative ~ PitchDifference + WidthDifference, data= mytable)
summary(model)
## 
## Call:
## lm(formula = PriceRelative ~ PitchDifference + WidthDifference, 
##     data = mytable)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.84163 -0.28484 -0.07241  0.17698  1.18778 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -0.10514    0.08304  -1.266 0.206077    
## PitchDifference  0.06019    0.01590   3.785 0.000174 ***
## WidthDifference  0.11621    0.02356   4.933 1.14e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3886 on 455 degrees of freedom
## Multiple R-squared:  0.2593, Adjusted R-squared:  0.2561 
## F-statistic: 79.65 on 2 and 455 DF,  p-value: < 2.2e-16

Inference: Greater the value of PitchDifference and WidthDifference, greater is the relative price difference of the Economy and Premium class seats.

model <- lm(PriceEconomy ~ . , data= mytable)
summary(model)
## 
## Call:
## lm(formula = PriceEconomy ~ ., data = mytable)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1249.84   -85.09     2.48   117.87   581.01 
## 
## Coefficients: (3 not defined because of singularities)
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -9.816e+03  9.529e+02 -10.301  < 2e-16 ***
## SeatsEconomy         2.190e+00  5.015e-01   4.366 1.57e-05 ***
## SeatsPremium        -1.761e+01  2.966e+00  -5.939 5.77e-09 ***
## PitchEconomy         2.451e+02  2.497e+01   9.816  < 2e-16 ***
## PitchPremium         1.471e+02  1.212e+01  12.136  < 2e-16 ***
## WidthEconomy        -2.055e+02  2.458e+01  -8.360 8.01e-16 ***
## WidthPremium         1.942e+01  1.560e+01   1.246    0.214    
## PricePremium         6.730e-01  8.749e-03  76.926  < 2e-16 ***
## PriceRelative       -7.528e+02  2.642e+01 -28.492  < 2e-16 ***
## SeatsTotal                  NA         NA      NA       NA    
## PitchDifference             NA         NA      NA       NA    
## WidthDifference             NA         NA      NA       NA    
## PercentPremiumSeats  3.259e+01  7.090e+00   4.597 5.59e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 210.2 on 448 degrees of freedom
## Multiple R-squared:  0.9557, Adjusted R-squared:  0.9548 
## F-statistic:  1073 on 9 and 448 DF,  p-value: < 2.2e-16

Inference: A significant inference is the relation that PriceEconomy and PricePremium factos hold, in the sense that the value of PriceEconomy is increased ‘6’ times when there is a unit change of PricePremium, but in the other case , the value of PricePremium is increased only ‘1.38’ times when there is a unit increase in the value of PriceEconomy.

model <- lm(PricePremium ~ . , data= mytable)
summary(model)
## 
## Call:
## lm(formula = PricePremium ~ ., data = mytable)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -884.43 -137.82   -5.22   95.60 2154.66 
## 
## Coefficients: (3 not defined because of singularities)
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.064e+04  1.433e+03   7.424 5.76e-13 ***
## SeatsEconomy        -2.479e+00  7.242e-01  -3.422 0.000678 ***
## SeatsPremium         2.285e+01  4.279e+00   5.340 1.48e-07 ***
## PitchEconomy        -2.575e+02  3.751e+01  -6.867 2.20e-11 ***
## PitchPremium        -1.866e+02  1.797e+01 -10.384  < 2e-16 ***
## WidthEconomy         2.457e+02  3.604e+01   6.817 3.01e-11 ***
## WidthPremium        -9.399e+00  2.238e+01  -0.420 0.674650    
## PriceEconomy         1.381e+00  1.796e-02  76.926  < 2e-16 ***
## PriceRelative        1.067e+03  3.858e+01  27.660  < 2e-16 ***
## SeatsTotal                  NA         NA      NA       NA    
## PitchDifference             NA         NA      NA       NA    
## WidthDifference             NA         NA      NA       NA    
## PercentPremiumSeats -3.398e+01  1.027e+01  -3.309 0.001012 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 301.1 on 448 degrees of freedom
## Multiple R-squared:  0.9464, Adjusted R-squared:  0.9454 
## F-statistic: 879.7 on 9 and 448 DF,  p-value: < 2.2e-16

Inference: Greater seats in the Premium class, lesser is the value of the PriceEconomy, and vice-versa.

model <- lm(PriceRelative ~ . , data= mytable)
summary(model)
## 
## Call:
## lm(formula = PriceRelative ~ ., data = mytable)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.86630 -0.10024 -0.00421  0.07693  0.83219 
## 
## Coefficients: (3 not defined because of singularities)
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -6.658e+00  1.085e+00  -6.135 1.88e-09 ***
## SeatsEconomy         1.892e-03  5.387e-04   3.513 0.000488 ***
## SeatsPremium        -1.660e-02  3.190e-03  -5.206 2.95e-07 ***
## PitchEconomy         1.232e-01  2.877e-02   4.281 2.27e-05 ***
## PitchPremium         1.223e-01  1.373e-02   8.904  < 2e-16 ***
## WidthEconomy        -1.474e-01  2.731e-02  -5.398 1.09e-07 ***
## WidthPremium         5.990e-02  1.642e-02   3.649 0.000294 ***
## PriceEconomy        -8.559e-04  3.004e-05 -28.492  < 2e-16 ***
## PricePremium         5.911e-04  2.137e-05  27.660  < 2e-16 ***
## SeatsTotal                  NA         NA      NA       NA    
## PitchDifference             NA         NA      NA       NA    
## WidthDifference             NA         NA      NA       NA    
## PercentPremiumSeats  2.389e-02  7.654e-03   3.121 0.001920 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2241 on 448 degrees of freedom
## Multiple R-squared:  0.7575, Adjusted R-squared:  0.7527 
## F-statistic: 155.5 on 9 and 448 DF,  p-value: < 2.2e-16

Inference: The ‘negative’ effect on PriceRelative is put most by the PriceEconomy, and it is almost ‘8’ times. This inference can infact be well validated by the formula where the term of PriceEconomy is in the denominator, and that’s how increasing the value of PriceEconomy decreases the value of PriceRelative.