Author’s questions for analysis:

Question One:

Is a person’s gender a good factor to use when determining their Trait Anger score? Of the two genders, which is most likely to have a higher Trait Anger score on a STAXI test?

[The Spielberger State-Trait Anger Expression Inventory (STAXI),measures trait anger as having a proneness to experiencing anger either as a general tendency (Anger temperament), or with provocation (Anger Reactions) (Spielberger, 1988, Spielberger & Sydeman, 1994). The Trait Anger Scale in the STAXI test assesses how often angry feelings are experienced over time.It should be noted that a person’s Trait Anger Score is a measure of their disposition for frequent, intense, long-lasting anger as a relatively enduring and stable personality attribute. A person having a score of 10 - 14 has a low trait anger score; a person with a score of 15 to 21, a moderate trait anger score and a person with a score of 22 to 40, a high trait anger score.]

Question Two:

Is there a correlation between “Want” and “Do” responses in the different scenarios? For example, in scenario one, if a participant answered “yes” to WantCurse, did they also respond “Yes” to DoCurse for the same scenario?


Description of original Dataset used

Item response data regarding verbal agression from 316( 243 females and 73 males) persons and 24 items. Participants were instructed to imagine four frustrating scenarios in which either another or oneself is to blame. For each scenario, they responded “yes”, “perhaps”, or “no” regarding whether they would react by cursing, scolding, and shouting. They also responded whether they would want to engage in those three behaviors, resulting in a total six items per scenario. An example item is, “A bus fails to stop for me. I would want to curse.” (Aggression: Verbal aggression data In edstan: Stan Models for Item Response Theory. (n.d.).)

This data set has 7579 observations across 9 variables.


Summary of original data Set

urlfile<-"https://raw.githubusercontent.com/juanellemarks/R-Bridge-Final-Project/master/Verbal%20Agression.csv"

vAgressiondataset<-read.csv(urlfile)
summary(vAgressiondataset)
##        X            Anger    Gender            item           resp     
##  }      :   1   Min.   :11    :   1   S1DoCurse  : 316          :   1  
##  1      :   1   1st Qu.:17   F:5832   S1DoScold  : 316   no     :3973  
##  10     :   1   Median :19   M:1752   S1DoShout  : 316   perhaps:2081  
##  100    :   1   Mean   :20            S1WantCurse: 316   yes    :1530  
##  1000   :   1   3rd Qu.:23            S1WantScold: 316                 
##  1001   :   1   Max.   :39            S1WantShout: 316                 
##  (Other):7579   NA's   :1             (Other)    :5689                 
##        id           btype         situ        mode      r2      
##  Min.   :  1.00        :   1        :   1       :   1    :   1  
##  1st Qu.: 79.75   curse:2528   other:3792   do  :3792   N:3973  
##  Median :158.50   scold:2528   self :3792   want:3792   Y:3611  
##  Mean   :158.50   shout:2528                                    
##  3rd Qu.:237.25                                                 
##  Max.   :316.00                                                 
##  NA's   :1
#summary(vAgressiondataset$Anger)

The average trait anger score of all participants in this test was 20.

Create data table

require(data.table)
## Loading required package: data.table
newtable<-data.table(vAgressiondataset)
head(newtable, n= 6)
##    X Anger Gender        item    resp id btype  situ mode r2
## 1: 1    20      M S1WantCurse      no  1 curse other want  N
## 2: 2    11      M S1WantCurse      no  2 curse other want  N
## 3: 3    17      F S1WantCurse perhaps  3 curse other want  Y
## 4: 4    21      F S1WantCurse perhaps  4 curse other want  Y
## 5: 5    17      F S1WantCurse perhaps  5 curse other want  Y
## 6: 6    21      F S1WantCurse     yes  6 curse other want  Y

Removing columns

Some columns that provided no useful information for me was removed from the data table.

newVagressiondataset = newtable[, !c("X", "btype", "mode", "situ", "r2"), with=FALSE]
#summary(newVagressiondataset)
head(newVagressiondataset, n=5)
##    Anger Gender        item    resp id
## 1:    20      M S1WantCurse      no  1
## 2:    11      M S1WantCurse      no  2
## 3:    17      F S1WantCurse perhaps  3
## 4:    21      F S1WantCurse perhaps  4
## 5:    17      F S1WantCurse perhaps  5

Renaming column names

Columns were renamed to enable easier readability.

names(newVagressiondataset)<-c("TA_Score","Sex", "Scenario", "Personresp", "Personid")
setkey(newVagressiondataset, Personid)
head(newVagressiondataset, n=8)
##    TA_Score Sex    Scenario Personresp Personid
## 1:       NA                                  NA
## 2:       20   M S1WantCurse         no        1
## 3:       20   M S1WantScold         no        1
## 4:       20   M S1WantShout         no        1
## 5:       20   M S2WantCurse         no        1
## 6:       20   M S2WantScold         no        1
## 7:       20   M S2WantShout         no        1
## 8:       20   M S3WantCurse         no        1

GENERAL SUMMARIES

These summaries were created to enable a better understanding of the the overall dataset. In order to answer my first question, i first sought to gain a summary of the data according to gender.

Summary of male

#create table to show all info about males 
Malegroup= newVagressiondataset[Sex == "M"]
summary(Malegroup)
##     TA_Score     Sex             Scenario      Personresp     Personid    
##  Min.   :11.00    :   0   S1DoCurse  :  73          :  0   Min.   :  1.0  
##  1st Qu.:16.00   F:   0   S1DoScold  :  73   no     :852   1st Qu.:124.0  
##  Median :19.00   M:1752   S1DoShout  :  73   perhaps:501   Median :190.0  
##  Mean   :19.84            S1WantCurse:  73   yes    :399   Mean   :176.6  
##  3rd Qu.:22.00            S1WantScold:  73                 3rd Qu.:228.0  
##  Max.   :36.00            S1WantShout:  73                 Max.   :312.0  
##                           (Other)    :1314

BoxPlot showing summary of male participants

boxplot(Malegroup$TA_Score, ylab="Score", main = "Trait Anger Scores in Male Participants")

Summary of female

#create table to show all info about females 
Femalegroup= newVagressiondataset[Sex == "F"]
summary(Femalegroup)
##     TA_Score     Sex             Scenario      Personresp      Personid  
##  Min.   :11.00    :   0   S1DoCurse  : 243          :   0   Min.   :  3  
##  1st Qu.:17.00   F:5832   S1DoScold  : 243   no     :3121   1st Qu.: 71  
##  Median :19.00   M:   0   S1DoShout  : 243   perhaps:1580   Median :143  
##  Mean   :20.05            S1WantCurse: 243   yes    :1131   Mean   :153  
##  3rd Qu.:23.00            S1WantScold: 243                  3rd Qu.:240  
##  Max.   :39.00            S1WantShout: 243                  Max.   :316  
##                           (Other)    :4374

Boxplot showing summary of female participants

boxplot(Femalegroup$TA_Score, ylab="Score", main = "Trait Anger Scores in Female Participants")

The box plots show that both male and female participants had a median trait anger score of 19.The maximum TA score was from the female dataset. However, this score was an outlier. There was little variation between the Q2 and Q3 values of the male and female dataset. This could indicate that gender might not be a determining factor of a person’s TA score results. It also indicates that TA Scores might not necessarily be gender biased. However, it is possible that the massive difference between the number of males and females who participated in the test, affected this result.

Summary of responses for scenario one

Wantcurse= newVagressiondataset[Scenario == "S1WantCurse"]
summary(Wantcurse)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S1WantCurse:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     : 91   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 95   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    :130   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantScold:  0                 Max.   :316.00  
##                       (Other)    :  0
#head(Wantcurse, n=3)
Wantshout<-newVagressiondataset[Scenario == "S1WantShout"]
summary(Wantshout)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S1WantShout:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :154   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 99   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 63   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
#head(Wantshout, n=10)
Wantscold =newVagressiondataset[Scenario == "S1WantScold"]
summary(Wantscold)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S1WantScold:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :126   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 86   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    :104   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Docurse =newVagressiondataset[Scenario == "S1DoCurse"]
summary(Docurse)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S1DoCurse  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     : 91   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoScold  :  0   perhaps:108   Median :158.50  
##  Mean   :20           S1DoShout  :  0   yes    :117   Mean   :158.50  
##  3rd Qu.:23           S1WantCurse:  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantScold:  0                 Max.   :316.00  
##                       (Other)    :  0
Doshout =newVagressiondataset[Scenario == "S1DoShout"]
summary(Doshout)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S1DoShout  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :208   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 68   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 40   Mean   :158.50  
##  3rd Qu.:23           S1WantCurse:  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantScold:  0                 Max.   :316.00  
##                       (Other)    :  0
Doscold =newVagressiondataset[Scenario == "S1DoScold"]
summary(Doscold)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S1DoScold  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :136   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 97   Median :158.50  
##  Mean   :20           S1DoShout  :  0   yes    : 83   Mean   :158.50  
##  3rd Qu.:23           S1WantCurse:  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantScold:  0                 Max.   :316.00  
##                       (Other)    :  0

Summary of responses for scenario two

Wantcurse2= newVagressiondataset[Scenario == "S2WantCurse"]
summary(Wantcurse2)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S2WantCurse:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     : 67   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps:112   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    :137   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
#head(Wantcurse, n=3)
Wantshout2<-newVagressiondataset[Scenario == "S2WantShout"]
summary(Wantshout2)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S2WantShout:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :158   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 84   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 74   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
#head(Wantshout, n=10)
Wantscold2 =newVagressiondataset[Scenario == "S2WantScold"]
summary(Wantscold2)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S2WantScold:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :118   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 93   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    :105   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Docurse2 =newVagressiondataset[Scenario == "S2DoCurse"]
summary(Docurse2)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S2DoCurse  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :109   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 97   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    :110   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Doshout2 =newVagressiondataset[Scenario == "S1DoShout"]
summary(Doshout2)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S1DoShout  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :208   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 68   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 40   Mean   :158.50  
##  3rd Qu.:23           S1WantCurse:  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantScold:  0                 Max.   :316.00  
##                       (Other)    :  0
Doscold2 =newVagressiondataset[Scenario == "S2DoScold"]
summary(Doscold2)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S2DoScold  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :162   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 92   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 62   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Summary of responses for scenario one
Wantcurse3= newVagressiondataset[Scenario == "S3WantCurse"]
summary(Wantcurse3)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S3WantCurse:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :128   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps:120   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 68   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
#head(Wantcurse3, n=3)
Wantshout3<-newVagressiondataset[Scenario == "S3WantShout"]
summary(Wantshout3)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S3WantShout:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :240   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 63   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 13   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
#head(Wantshout, n=10)
Wantscold3 =newVagressiondataset[Scenario == "S3WantScold"]
summary(Wantscold3)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S3WantScold:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :198   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 90   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 28   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Docurse3 =newVagressiondataset[Scenario == "S3DoCurse"]
summary(Docurse3)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S3DoCurse  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :171   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps:108   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 37   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Doshout3 =newVagressiondataset[Scenario == "S3DoShout"]
summary(Doshout3)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S3DoShout  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :287   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 25   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    :  4   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Doscold3 =newVagressiondataset[Scenario == "S3DoScold"]
summary(Doscold3)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S3DoScold  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :239   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 61   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 16   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Summary of responses for scenario one
Wantcurse4= newVagressiondataset[Scenario == "S4wantCurse"]
summary(Wantcurse4)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S4wantCurse:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     : 98   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps:127   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 91   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Wantshout4<-newVagressiondataset[Scenario == "S4WantShout"]
summary(Wantshout4)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S4WantShout:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :217   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 64   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 35   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
#head(Wantshout, n=10)
Wantscold4 =newVagressiondataset[Scenario == "S4WantScold"]
summary(Wantscold4)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S4WantScold:316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :179   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 88   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 49   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Docurse4 =newVagressiondataset[Scenario == "S4DoCurse"]
summary(Docurse4)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S4DoCurse  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :118   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps:117   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 81   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Doshout4 =newVagressiondataset[Scenario == "S4DoShout"]
summary(Doshout4)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S4DoShout  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :259   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 43   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 14   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0
Doscold4 =newVagressiondataset[Scenario == "S4DoScold"]
summary(Doscold4)
##     TA_Score  Sex            Scenario     Personresp     Personid     
##  Min.   :11    :  0   S4DoScold  :316          :  0   Min.   :  1.00  
##  1st Qu.:17   F:243              :  0   no     :181   1st Qu.: 79.75  
##  Median :19   M: 73   S1DoCurse  :  0   perhaps: 91   Median :158.50  
##  Mean   :20           S1DoScold  :  0   yes    : 44   Mean   :158.50  
##  3rd Qu.:23           S1DoShout  :  0                 3rd Qu.:237.25  
##  Max.   :39           S1WantCurse:  0                 Max.   :316.00  
##                       (Other)    :  0

Vectors were created from the results of the responses summary above. A data table was then created using these vectors.

#Create vector
Trait<-c("WantCurse", "WantShout", "WantScold","DoCurse", "DoShout", "DoScold")
S1Yes<-c(130, 63,104,117,63, 104)
S1No<-c(91,154,126,91,154,126)
S1Perhaps<-c(95,99,86,108,99,86)

S2Yes<-c(137, 74,105,110,40, 62)
S2No<-c(67,158,118,109,208,162)
S2Perhaps<-c(112,84,93,97,68,92)

S3Yes<-c(68, 13,28,37,4,16)
S3No<-c(128,240,198,171,287,239)
S3Perhaps<-c(120,63,90,108,25,61)

S4Yes<-c(91, 35,49,81,14, 44)
S4No<-c(98,217,179,118,289,181)
S4Perhaps<-c(127,64,88,117,43,91)

#Create data table
dataCompare<- data.frame(Trait,S1Yes,S2Yes,S3Yes,S4Yes,S1No,S2No,S3No,S4No,S1Perhaps,S2Perhaps, S3Perhaps, S4Perhaps )

require(data.table)
compareTable<-data.table(dataCompare)
#summary(compareTable)
#head(compareTable, n=20)
Was there a correlation between “want”, “perhaps” and “do” responses?

Two pairs of responses from scenario one were randomly selected to test the correlation

1

library(ggplot2)
ggplot(compareTable, aes(x=S1Yes, y=S1No)) + geom_point()

2

ggplot(compareTable, aes(x=S1Perhaps, y=S1No)) + geom_point()

Both scatter plots indicated a weak non-linear form. In fact the second plot indicated no association. This could suggest that there might be no correlation between a person wanting to express anger and actually expressing anger in situation similar to the one described in scenario one of the test.

Histograms showing the count between scenario one ‘yes’ and ‘no’ responses

library(ggplot2)
ggplot(data=compareTable) + geom_histogram(bins=20, aes(x=S1Yes)) #+facet_wrap(~S1No)

library(ggplot2)
ggplot(data=compareTable) + geom_histogram(bins=20, aes(x=S1No))

Conclusion

One’s gender might not be the ideal factor for determining their TA Score. Also, there might likely not be a direct correlation between one wanting to express anger in a given situation and actually expressing such anger.