Mean of Profit:

store.df <- read.csv(paste("Store24.csv", sep=""))
mean(store.df$Profit)
## [1] 276313.6

Standard deviation of Profit:

sd(store.df$Profit)
## [1] 89404.08

Mean of Manager Tenure:

mean(store.df$MTenure)
## [1] 45.29644

Standard deviation of Manager Tenure:

sd(store.df$MTenure)
## [1] 57.67155

Mean of Crew tenure:

mean(store.df$CTenure)
## [1] 13.9315

Standard deviation of Crew tenure:

sd(store.df$CTenure)
## [1] 17.69752

Ten store with Maximum Profit:

newd.df<-store.df[order(-store.df$Profit),]
newd.df[c(1:10),c(1:5)]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550

Ten store with Minimum sales:

newd.df[c(66:75),c(1:5)]
##    store   Sales Profit     MTenure   CTenure
## 37    37 1202917 187765  23.1985000  1.347023
## 61    61  716589 177046  21.8184200 13.305950
## 52    52 1073008 169201  24.1185600  3.416838
## 54    54  811190 159792   6.6703910  3.876797
## 13    13  857843 152513   0.6571813  1.577002
## 32    32  828918 149033  36.0792600  6.636550
## 55    55  925744 147672   6.6703910 18.365500
## 41    41  744211 147327  14.9180200 11.926080
## 66    66  879581 146058 115.2039000  3.876797
## 57    57  699306 122180  24.3485700  2.956879

Scatter Plot showing the line of best fit between Profit and Manager Tenure with there boxplot:

library(ggplot2)
library(ggExtra)
g <- ggplot(store.df, aes(MTenure,Profit),xlim=c(0,250)) + 
geom_count()+ 
geom_smooth(method = "lm",se=F,col="Green")
ggMarginal(g,type="boxplot",fill="transparent")

Scatter Plot showing the line of best fit between Profit and Crew Tenure with there boxplot:

q<-ggplot(store.df, aes(CTenure,Profit),xlim=c(0,110))+
geom_count() +
geom_smooth(method="lm",se=F,col="Green")
ggMarginal(q, type = "boxplot", fill="transparent")

Correlation between Between Each variable of store24:

round(cor(store.df),digits = 2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

Correlation between Profit and Manager Tenure:

round(cor(store.df[,c(3,4)]),digits = 2)
##         Profit MTenure
## Profit    1.00    0.44
## MTenure   0.44    1.00

Correlation between Profit and Crew Tenure:

round(cor(store.df[,c(3,5)]),digits = 2)
##         Profit CTenure
## Profit    1.00    0.26
## CTenure   0.26    1.00

Corrgram Between each variable of store24:

library(corrgram)
corrgram(store.df, order=TRUE, lower.panel=panel.shade,
 upper.panel=panel.pie, text.panel=panel.txt,
 main="Corrgram of store variables")

Pvalue of test between Profit and Manager Tenure:

cor.test(store.df$Profit,store.df$MTenure)$p.value
## [1] 8.193133e-05

Pvalue of test between Profit and Crew Tenure:

cor.test(store.df$Profit,store.df$CTenure)$p.value
## [1] 0.0256203

Regression Between Profit and MTenure+CTenure+Pop+Comp+Visibility+PedCount+Res+Hours24 with displaying names variable whose Pvalue is significant:

fit<-lm(store.df$Profit ~ store.df$MTenure+store.df$CTenure+store.df$Pop+store.df$Comp+store.df$Visibility+store.df$PedCount+store.df$Res+store.df$Hours24)
which(summary(fit)$coefficients[,4]<0.05)
##  store.df$MTenure  store.df$CTenure      store.df$Pop     store.df$Comp 
##                 2                 3                 4                 5 
## store.df$PedCount      store.df$Res  store.df$Hours24 
##                 7                 8                 9

Displaying names variable whose Pvalue is not significant:

which(summary(fit)$coefficients[,4]>0.05)
##         (Intercept) store.df$Visibility 
##                   1                   6

Performed regression and then Storing the prdicted value of profit:

temp.df<-store.df
temp.df$MTenure<-temp.df$MTenure+1
temp.df$CTenure<-temp.df$CTenure+1
fit2<-lm(Profit~MTenure,data = temp.df)
fit3<-lm(Profit~CTenure,data = temp.df)
InprofitM<-fitted(fit2)
InprofitC<-fitted(fit3)

Difference in profit when Manager Tenure is increased by 1 month:

InprofitM - store.df$Profit
##           1           2           3           4           5           6 
##  -19517.710 -119849.657   39013.799   35374.290  -52345.751 -121545.193 
##           7           8           9          10          11          12 
## -188316.035 -115618.710 -155075.253  -11712.057 -113896.691  105604.531 
##          13          14          15          16          17          18 
##   93430.402   43368.790   41545.290   65315.312    1485.430   14720.147 
##          19          20          21          22          23          24 
##  -13673.729   20525.346  -20678.707 -109042.937  -23489.653    8635.309 
##          25          26          27          28          29          30 
##  -36627.710   34031.402   49394.559  -11287.201   -5180.490  -38213.043 
##          31          32          33          34          35          36 
##   33611.290  121009.725  -12061.021 -116850.952  -51955.321   54506.461 
##          37          38          39          40          41          42 
##   73514.332   52931.195   47973.791  106126.087  108318.728  -16876.685 
##          43          44          45          46          47          48 
##   29072.870  -70300.628 -132237.110  -66080.859 -133615.673  -17256.057 
##          49          50          51          52          53          54 
##   87911.808    3224.327   10477.271   92704.293  -80578.285   90242.474 
##          55          56          57          58          59          60 
##  102362.474   59525.206  139881.779   21002.716  -48518.699  -87772.012 
##          61          62          63          64          65          66 
##   83294.398   51126.860   12071.542   24339.290   46065.054  177816.977 
##          67          68          69          70          71          72 
## -112993.816   21028.103  -99873.158    1442.728   76834.356  134770.902 
##          73          74          75 
##   -5707.519 -157096.155  -49787.174

Difference in profit when Crew Tenure is increased by 1 month:

InprofitC - store.df$Profit
##            1            2            3            4            5 
##   25453.9802 -157189.5039   41986.8842   55048.9437  -33363.1300 
##            6            7            8            9           10 
## -196095.3525 -208639.3849  -29034.1421 -208655.9360    9747.3631 
##           11           12           13           14           15 
## -129055.9671  -62202.5039  107718.2864     456.5258   65261.4819 
##           16           17           18           19           20 
##   67995.8247   -2658.3552  -91895.4646   18794.2945   -3315.6229 
##           21           22           23           24           25 
##  -15018.0705  -75071.1504  -14787.7278   -4727.7278  -10516.5349 
##           26           27           28           29           30 
##   72867.8896   50694.0422    7253.2945   24865.4239  -44935.2630 
##           31           32           33           34           35 
##   60321.2129  117784.4961  -29519.9813  -98317.2320  -45178.7573 
##           36           37           38           39           40 
##   66086.6374   72166.9139   57047.2864   44190.6306   57076.9206 
##           41           42           43           44           45 
##  126376.0822  106178.9360  -71912.3694  -33006.6073 -140038.3978 
##           46           47           48           49           50 
##  -50758.7433 -121035.5039  -15255.8907   82019.5557   28078.7990 
##           51           52           53           54           55 
##   30072.2425   93425.2722  -96104.8907  103433.0187  134413.5247 
##           56           57           58           59           60 
##   72493.1519  139847.5258   35923.3913  -26970.9398  -89552.8765 
##           61           62           63           64           65 
##   98453.3125   64475.8700   28080.8700   38176.1670  -12969.2630 
##           66           67           68           69           70 
##  117167.0187  -99440.7278   24790.4055  -82380.3548    9022.0187 
##           71           72           73           74           75 
##  109601.9999   97138.7668  -12674.8765 -222392.8683  -27314.1442

Topic: This report was commissioned to examine what are parameters affecting the profit of store24 and the corelation between profit and manager tenure and crew tenure. The research draws attention to the fact that the manager tenure and crew tenure of highest profitable store approximately four times of the manager tenure and crew tenure of lowest profitable store. The report evaluates this range and concludes that the manager tenure,crew tenure,population factor,pedestrian foot traffic volume,indicator for open 24 hours or not, location ,number of competitors found to be highly correlated with profit of the store24 stores.

It is recommended: 1)Store24 should focus on manager tenure because it is the intesively correlated with profit of the store. 2)Store24 should open there new store in highly populated area. 3)Company should also work keeping in mind pedestrian foot traffic is also an important factor for desired profit. 4)After manager tenure, crew tenure is also an important factor and store24 should work to increase the tenure of staff.

Limitations: The report also investigates the fact that the analysis conducted has limitations.Some of the limitation include data limitations,not having any parameter about the economic environment of the market and monthly details known results are based on past performances not present.