Recipe 5: Blocked Designs with multiple explanatory and nuisance factors

This is an R Markdown document. Markdown is a simple formatting syntax for authoring web pages (click the MD toolbar button for help on Markdown).

When you click the Knit HTML button a web page will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Recipes for the Design of Experiments: Recipe Outline

as of August 28, 2014, superceding the version of August 24. Always use the most recent version.

1. Setting

System under test

The Research Question: Study the effect of three factors (Transmission,drive and number of cylinders) on the city mileage of a vehicle (response variable). In order to study this problem we can formulate the null hypothesis as:

‘The variance in the type of transmission, the type of drive and the number of cylinders used in a vehicle (taken separately-main effect or two/three at a time-interaction effect) has no significant impact on the variance of its city mileage’

The alternate hypothesis is therefore stated as:‘The variance in 3 factors namely transmission, drive and number of cylinders(either one taken alone or an interaction between any two/three of them) has a significant effect on the variance in city mileage’

install.packages("fueleconomy", repos='http://cran.us.r-project.org')
## Installing package into 'C:/Users/uzma/Documents/R/win-library/3.1'
## (as 'lib' is unspecified)
## package 'fueleconomy' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\uzma\AppData\Local\Temp\RtmpGuJkZ9\downloaded_packages
library("fueleconomy", lib.loc="C:\\Users\\uzma\\Documents\\R\\win-library\\3.1")
x<-vehicles
head(x)
##      id       make               model year                       class
## 1 27550 AM General   DJ Po Vehicle 2WD 1984 Special Purpose Vehicle 2WD
## 2 28426 AM General   DJ Po Vehicle 2WD 1984 Special Purpose Vehicle 2WD
## 3 27549 AM General    FJ8c Post Office 1984 Special Purpose Vehicle 2WD
## 4 28425 AM General    FJ8c Post Office 1984 Special Purpose Vehicle 2WD
## 5  1032 AM General Post Office DJ5 2WD 1985 Special Purpose Vehicle 2WD
## 6  1033 AM General Post Office DJ8 2WD 1985 Special Purpose Vehicle 2WD
##             trans            drive cyl displ    fuel hwy cty
## 1 Automatic 3-spd    2-Wheel Drive   4   2.5 Regular  17  18
## 2 Automatic 3-spd    2-Wheel Drive   4   2.5 Regular  17  18
## 3 Automatic 3-spd    2-Wheel Drive   6   4.2 Regular  13  13
## 4 Automatic 3-spd    2-Wheel Drive   6   4.2 Regular  13  13
## 5 Automatic 3-spd Rear-Wheel Drive   4   2.5 Regular  17  16
## 6 Automatic 3-spd Rear-Wheel Drive   6   4.2 Regular  13  13

Factors and Levels

There are three factors of interest : Transmission,drive and number of cylinders. However we perform some preliminary analysis to see which factors to block on since there are various other independent variables (factors) that can have an effect on the response variable.Each factor (independent variable) has several levels and we consider all levels for this experiment.

Preliminary testing

NOTE: Only the first 600 rows from the data set were used as a sample for testing the hypothesis because the system was unable to handle more records resulting in a system ‘crash’.(Most of the conclusions from preliminary analysis were made using the entire dataset)

Deciding on blocking variables:

L<-x[1:600,]

L$make=as.factor(L$make)

L$year=as.factor(L$year)

L$fuel=as.factor(L$fuel)

L$trans=as.factor(L$trans)

L$cyl=as.factor(L$cyl)

L$drive=as.factor(L$drive)


#Boxplots for preliminary analysis only

boxplot(cty~make,data=L ,xlab="Make of the vehicle", ylab="city mileage (MPG)")
title("Boxplot 'Make'")

plot of chunk unnamed-chunk-2

boxplot(cty~year,data=L,xlab="Year", ylab="city mileage (MPG)")
title("Boxplot 'Year'")

plot of chunk unnamed-chunk-2

boxplot(cty~fuel,data=L,xlab="Fuel Type", ylab="city mileage (MPG)")
title("Boxplot 'Fuel'")

plot of chunk unnamed-chunk-2

From the above box-plots it is clear that the within group variation in most levels for the variables ‘Make’ and ‘Fuel’ is quite less as compared to the variation between levels. Therefore these seem to be good candidates for blocking(controlling the known variability due to nuisance variables), given our requirement of focussing on three factors only (stated above).

Data Summary

str(L)
## Classes 'tbl_df', 'tbl' and 'data.frame':    600 obs. of  12 variables:
##  $ id   : int  27550 28426 27549 28425 1032 1033 3347 13309 13310 13311 ...
##  $ make : Factor w/ 7 levels "Acura","Alfa Romeo",..: 3 3 3 3 3 3 5 1 1 1 ...
##  $ model: chr  "DJ Po Vehicle 2WD" "DJ Po Vehicle 2WD" "FJ8c Post Office" "FJ8c Post Office" ...
##  $ year : Factor w/ 32 levels "1984","1985",..: 1 1 1 1 2 2 4 14 14 14 ...
##  $ class: chr  "Special Purpose Vehicle 2WD" "Special Purpose Vehicle 2WD" "Special Purpose Vehicle 2WD" "Special Purpose Vehicle 2WD" ...
##  $ trans: Factor w/ 15 levels "Auto(AM-S6)",..: 9 9 9 9 9 9 10 10 14 10 ...
##  $ drive: Factor w/ 5 levels "2-Wheel Drive",..: 1 1 1 1 5 5 5 4 4 4 ...
##  $ cyl  : Factor w/ 5 levels "4","5","6","8",..: 1 1 3 3 1 3 3 1 1 3 ...
##  $ displ: num  2.5 2.5 4.2 4.2 2.5 4.2 3.8 2.2 2.2 3 ...
##  $ fuel : Factor w/ 3 levels "Diesel","Premium",..: 3 3 3 3 3 3 2 3 3 3 ...
##  $ hwy  : int  17 17 13 13 17 13 21 26 28 26 ...
##  $ cty  : int  18 18 13 13 16 13 14 20 22 18 ...
head(L)
##      id       make               model year                       class
## 1 27550 AM General   DJ Po Vehicle 2WD 1984 Special Purpose Vehicle 2WD
## 2 28426 AM General   DJ Po Vehicle 2WD 1984 Special Purpose Vehicle 2WD
## 3 27549 AM General    FJ8c Post Office 1984 Special Purpose Vehicle 2WD
## 4 28425 AM General    FJ8c Post Office 1984 Special Purpose Vehicle 2WD
## 5  1032 AM General Post Office DJ5 2WD 1985 Special Purpose Vehicle 2WD
## 6  1033 AM General Post Office DJ8 2WD 1985 Special Purpose Vehicle 2WD
##             trans            drive cyl displ    fuel hwy cty
## 1 Automatic 3-spd    2-Wheel Drive   4   2.5 Regular  17  18
## 2 Automatic 3-spd    2-Wheel Drive   4   2.5 Regular  17  18
## 3 Automatic 3-spd    2-Wheel Drive   6   4.2 Regular  13  13
## 4 Automatic 3-spd    2-Wheel Drive   6   4.2 Regular  13  13
## 5 Automatic 3-spd Rear-Wheel Drive   4   2.5 Regular  17  16
## 6 Automatic 3-spd Rear-Wheel Drive   6   4.2 Regular  13  13
tail(L)
##        id make      model year                class          trans
## 595 26013 Audi A3 quattro 2009 Small Station Wagons Automatic (S6)
## 596 28680 Audi A3 quattro 2010 Small Station Wagons Automatic (S6)
## 597 30427 Audi A3 quattro 2011 Small Station Wagons Automatic (S6)
## 598 31590 Audi A3 quattro 2012 Small Station Wagons Automatic (S6)
## 599 32730 Audi A3 quattro 2013 Small Station Wagons    Auto(AM-S6)
## 600 34710 Audi A3 quattro 2015      Subcompact Cars    Auto(AM-S6)
##                          drive cyl displ    fuel hwy cty
## 595 4-Wheel or All-Wheel Drive   6   3.2 Premium  25  18
## 596            All-Wheel Drive   4   2.0 Premium  28  21
## 597            All-Wheel Drive   4   2.0 Premium  28  21
## 598            All-Wheel Drive   4   2.0 Premium  28  21
## 599            All-Wheel Drive   4   2.0 Premium  28  21
## 600            All-Wheel Drive   4   1.8 Premium  33  24
summary(L)
##        id                                 make        model          
##  Min.   :    1   Acura                      :269   Length:600        
##  1st Qu.: 7688   Alfa Romeo                 : 39   Class :character  
##  Median :15624   AM General                 :  6   Mode  :character  
##  Mean   :17063   American Motors Corporation: 27                     
##  3rd Qu.:27590   ASC Incorporated           :  1                     
##  Max.   :34843   Aston Martin               :112                     
##                  Audi                       :146                     
##       year        class                       trans    
##  1987   : 33   Length:600         Manual 5-spd   :172  
##  2012   : 27   Class :character   Automatic 4-spd: 99  
##  1993   : 26   Mode  :character   Manual 6-spd   : 84  
##  1989   : 25                      Automatic (S6) : 75  
##  1992   : 25                      Automatic (S5) : 64  
##  2011   : 25                      Automatic 3-spd: 62  
##  (Other):439                      (Other)        : 44  
##                         drive     cyl          displ           fuel    
##  2-Wheel Drive             :  4   4 :167   Min.   :1.50   Diesel :  4  
##  4-Wheel or All-Wheel Drive: 96   5 : 86   1st Qu.:2.20   Premium:370  
##  All-Wheel Drive           : 34   6 :242   Median :2.80   Regular:226  
##  Front-Wheel Drive         :297   8 : 46   Mean   :3.17                
##  Rear-Wheel Drive          :169   12: 59   3rd Qu.:3.70                
##                                            Max.   :5.90                
##                                                                        
##       hwy          cty      
##  Min.   : 9   Min.   : 7.0  
##  1st Qu.:20   1st Qu.:15.0  
##  Median :23   Median :16.0  
##  Mean   :23   Mean   :16.7  
##  3rd Qu.:27   3rd Qu.:19.0  
##  Max.   :42   Max.   :39.0  
## 

Continuous variables

The response variable i.e. city mileage is a continuous variable. Also, highway mileage for each vehicle is continuous.

Response variables

City mileage (cty) measured in MPG (miles per gallon) is the only response variable.

The Data: How is it organized and what does it look like?

The given data set is the fuel economy data from the EPA. It ranges from the year 1985 to 2015 for various car models and each row has a detailed specification of the vehicle. There are 74 variables and 34632 records in the original data set.

Randomization

We can safely assume the data to be randomized because it is a result of vehicle testing done at the Environmental Protection Agency National Vehicle and Fuel Emissions Laboratory. Since almost every vehicle needs to clear this testing therefore data is a true representative of the population as a whole.

2. (Experimental) Design

How will the experiment be organized and conducted to test the hypothesis?

This is a three factor ANOVA (analysis of variance) experiment.We conduct a main effects test and an interaction effect test for all three variables (factors) in order to test the variability in the response variable as a result of the variablity in the 3 identified factors. Since there are various other independent variables present in the data set, that may have an effect on the response variable therefore we use blocking on two variables (fuel type used and make of the car)and test the within group/block variability for the factors of interest only.Through blocking we tend to minimize the effect of these nuisance variables and thus able to control their effect on the final response.

What is the rationale for this design?

If we are able to determine the within group and between group variability on the performance of a vehicle based on certain factors, then that can be a useful study for performance enhancement.

Randomize: What is the Randomization Scheme?

It is a completely randomized design, given that it is survey data.

Replicate: Are there replicates and/or repeated measures?

There are no repeated measures since we are using data from a study conducted by EPA.

3. (Statistical) Analysis

(Exploratory Data Analysis) Graphics and descriptive summary

#Create a histogram 

par(mfrow=c(1,1))

hist(L$cty, xlim=c(0,100), ylab = "City Mileage (MPG)")

plot of chunk unnamed-chunk-4

# Boxplots for the 3 factors

boxplot(cty~trans,data=L,xlab="Transmission", ylab="city mileage (MPG)")
title("Boxplot 'Transmission'")

plot of chunk unnamed-chunk-4

boxplot(cty~cyl,data=L,xlab="Number of cylinders", ylab="city mileage (MPG)")
title("Boxplot 'Number of cylinders'")

plot of chunk unnamed-chunk-4

boxplot(cty~drive,data=L,xlab="Type of drive", ylab="city mileage (MPG)")
title("Boxplot 'Drive type'")

plot of chunk unnamed-chunk-4

Testing

Analysis of variance for the factor cylinder within the each block

modelcylf=aov(cty~(cyl)+fuel,data=L)
anova(modelcylf)
## Analysis of Variance Table
## 
## Response: cty
##            Df Sum Sq Mean Sq F value Pr(>F)    
## cyl         4   6797    1699   473.9 <2e-16 ***
## fuel        2    446     223    62.1 <2e-16 ***
## Residuals 593   2126       4                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modelcylm=aov(cty~(cyl)+make,data=L)
anova(modelcylm)
## Analysis of Variance Table
## 
## Response: cty
##            Df Sum Sq Mean Sq F value Pr(>F)    
## cyl         4   6797    1699   451.7 <2e-16 ***
## make        6    356      59    15.8 <2e-16 ***
## Residuals 589   2216       4                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of variance for the factor transmission within each block

modeltrf=aov(cty~(trans)+fuel,data=L)
anova(modeltrf)
## Analysis of Variance Table
## 
## Response: cty
##            Df Sum Sq Mean Sq F value  Pr(>F)    
## trans      14   2324     166    15.2 < 2e-16 ***
## fuel        2    688     344    31.6 9.7e-14 ***
## Residuals 583   6356      11                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modeltrm=aov(cty~(trans)+make,data=L)
anova(modeltrm)
## Analysis of Variance Table
## 
## Response: cty
##            Df Sum Sq Mean Sq F value Pr(>F)    
## trans      14   2324     166    31.6 <2e-16 ***
## make        6   3998     666   126.6 <2e-16 ***
## Residuals 579   3047       5                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of variance for the factor drive within each block

modeldrf=aov(cty~(drive)+fuel,data=L)
anova(modeldrf)
## Analysis of Variance Table
## 
## Response: cty
##            Df Sum Sq Mean Sq F value Pr(>F)    
## drive       4   4168    1042   131.2 <2e-16 ***
## fuel        2    489     244    30.8  2e-13 ***
## Residuals 593   4712       8                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modeldrm=aov(cty~(drive)+make,data=L)
anova(modeldrm)
## Analysis of Variance Table
## 
## Response: cty
##            Df Sum Sq Mean Sq F value Pr(>F)    
## drive       4   4168    1042   151.6 <2e-16 ***
## make        6   1150     192    27.9 <2e-16 ***
## Residuals 589   4050       7                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Analysis of variance for all the factors:cylinder,drive and transmission within each block and also for both the blocking variables taken together

modelallf=aov(cty~(cyl*trans*drive)+fuel,data=L)
anova(modelallf)
## Analysis of Variance Table
## 
## Response: cty
##                  Df Sum Sq Mean Sq F value  Pr(>F)    
## cyl               4   6797    1699 1815.15 < 2e-16 ***
## trans            14   1327      95  101.27 < 2e-16 ***
## drive             4    318      80   84.93 < 2e-16 ***
## fuel              2    175      87   93.22 < 2e-16 ***
## cyl:trans        14    155      11   11.81 < 2e-16 ***
## cyl:drive         5     35       7    7.52 7.7e-07 ***
## trans:drive      11     34       3    3.30 0.00021 ***
## cyl:trans:drive   4     21       5    5.73 0.00016 ***
## Residuals       541    506       1                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
modelallm=aov(cty~(cyl*trans*drive)+make,data=L)
anova(modelallm)
## Analysis of Variance Table
## 
## Response: cty
##                  Df Sum Sq Mean Sq F value  Pr(>F)    
## cyl               4   6797    1699 1581.45 < 2e-16 ***
## trans            14   1327      95   88.23 < 2e-16 ***
## drive             4    318      80   73.99 < 2e-16 ***
## make              6    100      17   15.46 < 2e-16 ***
## cyl:trans        14    158      11   10.50 < 2e-16 ***
## cyl:drive         5     47       9    8.67 6.4e-08 ***
## trans:drive      11     40       4    3.34 0.00018 ***
## cyl:trans:drive   4      6       1    1.35 0.25131    
## Residuals       537    577       1                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Both blocking variables taken together

modelall=aov(cty~(cyl*trans*drive)+make+fuel,data=L)
anova(modelall)
## Analysis of Variance Table
## 
## Response: cty
##                  Df Sum Sq Mean Sq F value  Pr(>F)    
## cyl               4   6797    1699 2296.56 < 2e-16 ***
## trans            14   1327      95  128.13 < 2e-16 ***
## drive             4    318      80  107.45 < 2e-16 ***
## make              6    100      17   22.45 < 2e-16 ***
## fuel              2    178      89  120.23 < 2e-16 ***
## cyl:trans        14    155      11   14.99 < 2e-16 ***
## cyl:drive         5     29       6    7.89 3.5e-07 ***
## trans:drive      11     47       4    5.82 6.0e-09 ***
## cyl:trans:drive   4     21       5    7.17 1.3e-05 ***
## Residuals       535    396       1                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Results

The results from ANOVA show that both the blocking variables have very small p-values conforming that these are valid blocking variables.
For the hypothesis testing, we see that (for our sample) there is a significant effect of all three factors in all the blocks (separate blocks or an interaction of both blocks)on the response variable. A low p value (less than 0.5) indicates that the variation in city gas mileage is caused by something other than randomization alone (so the factors have a main and interaction effect on the response variable).In conclusion we reject the null hypothesis.

Diagnostics/Model Adequacy Checking

In this section we check the adequacy of the ANOVA model.

# Shapiro Test

shapiro.test(L$cty)
## 
##  Shapiro-Wilk normality test
## 
## data:  L$cty
## W = 0.9453, p-value = 4.399e-14
#Diagnostics for the main effect under blocking factor fuel

#Number of cylinders

qqnorm(residuals(modelcylf),main="Normal Q-Q Plot for no. of cylinders-Fuel type blocked",ylab="Residuals-City mileage (MPG)")

qqline(residuals(modelcylf))

plot of chunk unnamed-chunk-9

plot(fitted(modelcylf),residuals(modelcylf))

plot of chunk unnamed-chunk-9

#Transmission type

qqnorm(residuals(modeltrf),main="Normal Q-Q Plot for transmission type-Fuel type blocked",ylab="Residuals-City mileage (MPG)")

qqline(residuals(modeltrf))

plot of chunk unnamed-chunk-9

plot(fitted(modeltrf),residuals(modeltrf))

plot of chunk unnamed-chunk-9

#Drive type

qqnorm(residuals(modeldrf),main="Normal Q-Q Plot for drive type-Fuel type blocked",ylab="Residuals-City mileage (MPG)")

qqline(residuals(modeldrf))

plot of chunk unnamed-chunk-9

plot(fitted(modeldrf),residuals(modeldrf))

plot of chunk unnamed-chunk-9

#Diagnostics for the main effect under blocking factor make

#Number of cylinders

qqnorm(residuals(modelcylm),main="Normal Q-Q Plot for no. of cylinders-Make type blocked",ylab="Residuals-City mileage (MPG)")

qqline(residuals(modelcylm))

plot of chunk unnamed-chunk-9

plot(fitted(modelcylm),residuals(modelcylm))

plot of chunk unnamed-chunk-9

#Transmission type

qqnorm(residuals(modeltrm),main="Normal Q-Q Plot for transmission type-Make type blocked",ylab="Residuals-City mileage (MPG)")

qqline(residuals(modeltrm))

plot of chunk unnamed-chunk-9

plot(fitted(modeltrm),residuals(modeltrm))

plot of chunk unnamed-chunk-9

#Drive type

qqnorm(residuals(modeldrm),main="Normal Q-Q Plot for drive type-Make type blocked",ylab="Residuals-City mileage (MPG)")

qqline(residuals(modeldrm))

plot of chunk unnamed-chunk-9

plot(fitted(modeldrm),residuals(modeldrm))

plot of chunk unnamed-chunk-9

#Diagnostics for the interaction effect when blocked by factor fuel

qqnorm(residuals(modelallf),main="Normal Q-Q Plot for Interaction-Fuel type blocked",ylab="Residuals-City mileage (MPG)")
qqline(residuals(modelallf))

plot of chunk unnamed-chunk-9

plot(fitted(modelallf),residuals(modelallf))

plot of chunk unnamed-chunk-9

#Diagnostics for the interaction effect when blocked by factor make

qqnorm(residuals(modelallm),main="Normal Q-Q Plot for Interaction- Make blocked",ylab="Residuals-City mileage (MPG)")

qqline(residuals(modelallm))

plot of chunk unnamed-chunk-9

plot(fitted(modelallm),residuals(modelallm))

plot of chunk unnamed-chunk-9

# Blocking

qqnorm(residuals(modelall),main="Normal Q-Q Plot for Interaction- Make and fuel blocked",ylab="Residuals-City mileage (MPG)")

qqline(residuals(modelall))

plot of chunk unnamed-chunk-9

plot(fitted(modelall),residuals(modelall))

plot of chunk unnamed-chunk-9

#Interaction plots

interaction.plot(L$cyl,L$trans,L$cty, xlab= "Number of cylinders", ylab="City Mileage(MPG)", main ="Interaction plot", trace.label="Transmission type")

plot of chunk unnamed-chunk-9

interaction.plot(L$cyl,L$drive,L$cty, xlab= "Number of cylinders", ylab="City Mileage(MPG)", main ="Interaction plot", trace.label="Type of drive")

plot of chunk unnamed-chunk-9

interaction.plot(L$drive,L$trans,L$cty, xlab= "Type of drive", ylab="City Mileage(MPG)", main ="Interaction plot", trace.label="Transmission type")

plot of chunk unnamed-chunk-9

Results

Shapiro test gives a value of p which is less than 0.1. This shows that the data is normally distributed.

Normal Q-Q Plots:All the Normal Q-Q plots confirm to the assumption of normality. There are a few deviations from the normality (for the factor-Number of cylinders). However, for most other factors as well as their interaction plots are normal for most of the data.

Scatter plots: Since the scatter plots for the residuals of ‘transmission type’ and ‘type of drive’ show some skewedness in both blocks, we can say that this model could be biased.However the residuals for the interaction model do not show any specific patterns so we can say it is a reasonable fit. The plots do depict the presence of some outliers but the data can be considered appropriate for 2-way Annova.

Interaction Plots: As expected, we can see interaction between various levels of all the factors (2 at a time).

Tukey’s test

In order to avoid the chances of discovering false positives in a multivariate statistical test we further perform a Tukey’s HSD test.We use this test to compare means of various treatment levels.

# Number of cylinders
TukeyHSD(modelcylf, ordered = FALSE, conf.level = 0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = cty ~ (cyl) + fuel, data = L)
## 
## $cyl
##           diff      lwr     upr  p adj
## 5-4   -4.88330  -5.5709 -4.1957 0.0000
## 6-4   -4.86745  -5.3886 -4.3462 0.0000
## 8-4  -10.20737 -11.0701 -9.3447 0.0000
## 12-4 -10.13478 -10.9194 -9.3501 0.0000
## 6-5    0.01586  -0.6346  0.6663 1.0000
## 8-5   -5.32406  -6.2705 -4.3777 0.0000
## 12-5  -5.25148  -6.1273 -4.3756 0.0000
## 8-6   -5.33992  -6.1733 -4.5066 0.0000
## 12-6  -5.26733  -6.0196 -4.5151 0.0000
## 12-8   0.07259  -0.9465  1.0916 0.9997
## 
## $fuel
##                    diff     lwr     upr p adj
## Premium-Diesel  -8.5542 -10.791 -6.3177     0
## Regular-Diesel  -9.3964 -11.640 -7.1523     0
## Regular-Premium -0.8422  -1.218 -0.4666     0
TukeyHSD(modelcylm, ordered = FALSE, conf.level = 0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = cty ~ (cyl) + make, data = L)
## 
## $cyl
##           diff      lwr     upr  p adj
## 5-4   -4.88330  -5.5877 -4.1789 0.0000
## 6-4   -4.86745  -5.4013 -4.3336 0.0000
## 8-4  -10.20737 -11.0910 -9.3237 0.0000
## 12-4 -10.13478 -10.9385 -9.3311 0.0000
## 6-5    0.01586  -0.6504  0.6821 1.0000
## 8-5   -5.32406  -6.2935 -4.3547 0.0000
## 12-5  -5.25148  -6.1486 -4.3544 0.0000
## 8-6   -5.33992  -6.1935 -4.4863 0.0000
## 12-6  -5.26733  -6.0379 -4.4968 0.0000
## 12-8   0.07259  -0.9712  1.1164 0.9997
## 
## $make
##                                                 diff      lwr       upr
## Alfa Romeo-Acura                             -1.4667 -2.44985 -0.483495
## AM General-Acura                             -3.9918 -6.36029 -1.623226
## American Motors Corporation-Acura            -1.8706 -3.02899 -0.712227
## ASC Incorporated-Acura                       -2.7247 -8.47340  3.024005
## Aston Martin-Acura                           -0.6794 -1.32471 -0.034169
## Audi-Acura                                   -0.2290 -0.81882  0.360860
## AM General-Alfa Romeo                        -2.5251 -5.04139 -0.008784
## American Motors Corporation-Alfa Romeo       -0.4039 -1.84049  1.032616
## ASC Incorporated-Alfa Romeo                  -1.2580 -7.06918  4.553119
## Aston Martin-Alfa Romeo                       0.7872 -0.27964  1.854102
## Audi-Alfa Romeo                               1.2377  0.20340  2.271976
## American Motors Corporation-AM General        2.1211 -0.46864  4.710932
## ASC Incorporated-AM General                   1.2671 -4.93074  7.464858
## Aston Martin-AM General                       3.3123  0.90784  5.716794
## Audi-AM General                               3.7628  1.37257  6.152972
## ASC Incorporated-American Motors Corporation -0.8541 -6.69743  4.989253
## Aston Martin-American Motors Corporation      1.1912 -0.03904  2.421385
## Audi-American Motors Corporation              1.6416  0.43956  2.843695
## Aston Martin-ASC Incorporated                 2.0453 -3.71835  7.808869
## Audi-ASC Incorporated                         2.4957 -3.26195  8.253383
## Audi-Aston Martin                             0.4505 -0.27030  1.171213
##                                               p adj
## Alfa Romeo-Acura                             0.0002
## AM General-Acura                             0.0000
## American Motors Corporation-Acura            0.0000
## ASC Incorporated-Acura                       0.8006
## Aston Martin-Acura                           0.0315
## Audi-Acura                                   0.9126
## AM General-Alfa Romeo                        0.0485
## American Motors Corporation-Alfa Romeo       0.9816
## ASC Incorporated-Alfa Romeo                  0.9954
## Aston Martin-Alfa Romeo                      0.3063
## Audi-Alfa Romeo                              0.0078
## American Motors Corporation-AM General       0.1907
## ASC Incorporated-AM General                  0.9967
## Aston Martin-AM General                      0.0010
## Audi-AM General                              0.0001
## ASC Incorporated-American Motors Corporation 0.9995
## Aston Martin-American Motors Corporation     0.0649
## Audi-American Motors Corporation             0.0012
## Aston Martin-ASC Incorporated                0.9420
## Audi-ASC Incorporated                        0.8599
## Audi-Aston Martin                            0.5153
# Drive type
TukeyHSD(modeldrf, ordered = FALSE, conf.level = 0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = cty ~ (drive) + fuel, data = L)
## 
## $drive
##                                                 diff     lwr    upr  p adj
## 4-Wheel or All-Wheel Drive-2-Wheel Drive      0.3958 -3.5401  4.332 0.9987
## All-Wheel Drive-2-Wheel Drive                 2.5294 -1.5475  6.606 0.4362
## Front-Wheel Drive-2-Wheel Drive               3.5539 -0.3284  7.436 0.0909
## Rear-Wheel Drive-2-Wheel Drive               -2.5651 -6.4668  1.337 0.3752
## All-Wheel Drive-4-Wheel or All-Wheel Drive    2.1336  0.5943  3.673 0.0015
## Front-Wheel Drive-4-Wheel or All-Wheel Drive  3.1580  2.2525  4.064 0.0000
## Rear-Wheel Drive-4-Wheel or All-Wheel Drive  -2.9609 -3.9466 -1.975 0.0000
## Front-Wheel Drive-All-Wheel Drive             1.0245 -0.3719  2.421 0.2636
## Rear-Wheel Drive-All-Wheel Drive             -5.0945 -6.5442 -3.645 0.0000
## Rear-Wheel Drive-Front-Wheel Drive           -6.1190 -6.8621 -5.376 0.0000
## 
## $fuel
##                    diff      lwr     upr  p adj
## Premium-Diesel  -10.965 -14.2944 -7.6356 0.0000
## Regular-Diesel  -11.109 -14.4497 -7.7682 0.0000
## Regular-Premium  -0.144  -0.7031  0.4152 0.8175
TukeyHSD(modeldrm, ordered = FALSE, conf.level = 0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = cty ~ (drive) + make, data = L)
## 
## $drive
##                                                 diff      lwr    upr
## 4-Wheel or All-Wheel Drive-2-Wheel Drive      0.3958 -3.26562  4.057
## All-Wheel Drive-2-Wheel Drive                 2.5294 -1.26323  6.322
## Front-Wheel Drive-2-Wheel Drive               3.5539 -0.05768  7.165
## Rear-Wheel Drive-2-Wheel Drive               -2.5651 -6.19477  1.065
## All-Wheel Drive-4-Wheel or All-Wheel Drive    2.1336  0.70167  3.565
## Front-Wheel Drive-4-Wheel or All-Wheel Drive  3.1580  2.31567  4.000
## Rear-Wheel Drive-4-Wheel or All-Wheel Drive  -2.9609 -3.87791 -2.044
## Front-Wheel Drive-All-Wheel Drive             1.0245 -0.27456  2.323
## Rear-Wheel Drive-All-Wheel Drive             -5.0945 -6.44310 -3.746
## Rear-Wheel Drive-Front-Wheel Drive           -6.1190 -6.81030 -5.428
##                                               p adj
## 4-Wheel or All-Wheel Drive-2-Wheel Drive     0.9983
## All-Wheel Drive-2-Wheel Drive                0.3601
## Front-Wheel Drive-2-Wheel Drive              0.0562
## Rear-Wheel Drive-2-Wheel Drive               0.3006
## All-Wheel Drive-4-Wheel or All-Wheel Drive   0.0005
## Front-Wheel Drive-4-Wheel or All-Wheel Drive 0.0000
## Rear-Wheel Drive-4-Wheel or All-Wheel Drive  0.0000
## Front-Wheel Drive-All-Wheel Drive            0.1974
## Rear-Wheel Drive-All-Wheel Drive             0.0000
## Rear-Wheel Drive-Front-Wheel Drive           0.0000
## 
## $make
##                                                 diff      lwr      upr
## Alfa Romeo-Acura                              1.1878  -0.1414  2.51709
## AM General-Acura                             -0.0595  -3.2618  3.14278
## American Motors Corporation-Acura            -0.1807  -1.7469  1.38541
## ASC Incorporated-Acura                        0.4839  -7.2884  8.25621
## Aston Martin-Acura                           -2.3911  -3.2635 -1.51869
## Audi-Acura                                   -0.8389  -1.6364 -0.04147
## AM General-Alfa Romeo                        -1.2473  -4.6494  2.15474
## American Motors Corporation-Alfa Romeo       -1.3686  -3.3108  0.57368
## ASC Incorporated-Alfa Romeo                  -0.7039  -8.5607  7.15280
## Aston Martin-Alfa Romeo                      -3.5789  -5.0214 -2.13652
## Audi-Alfa Romeo                              -2.0268  -3.4251 -0.62840
## American Motors Corporation-AM General       -0.1212  -3.6227  3.38019
## ASC Incorporated-AM General                   0.5434  -7.8361  8.92289
## Aston Martin-AM General                      -2.3316  -5.5825  0.91927
## Audi-AM General                              -0.7794  -4.0110  2.45213
## ASC Incorporated-American Motors Corporation  0.6646  -7.2356  8.56489
## Aston Martin-American Motors Corporation     -2.2104  -3.8736 -0.54711
## Audi-American Motors Corporation             -0.6582  -2.2834  0.96700
## Aston Martin-ASC Incorporated                -2.8750 -10.6675  4.91746
## Audi-ASC Incorporated                        -1.3228  -9.1073  6.46159
## Audi-Aston Martin                             1.5522   0.5777  2.52663
##                                               p adj
## Alfa Romeo-Acura                             0.1150
## AM General-Acura                             1.0000
## American Motors Corporation-Acura            0.9999
## ASC Incorporated-Acura                       1.0000
## Aston Martin-Acura                           0.0000
## Audi-Acura                                   0.0318
## AM General-Alfa Romeo                        0.9325
## American Motors Corporation-Alfa Romeo       0.3631
## ASC Incorporated-Alfa Romeo                  1.0000
## Aston Martin-Alfa Romeo                      0.0000
## Audi-Alfa Romeo                              0.0004
## American Motors Corporation-AM General       1.0000
## ASC Incorporated-AM General                  1.0000
## Aston Martin-AM General                      0.3410
## Audi-AM General                              0.9918
## ASC Incorporated-American Motors Corporation 1.0000
## Aston Martin-American Motors Corporation     0.0018
## Audi-American Motors Corporation             0.8948
## Aston Martin-ASC Incorporated                0.9305
## Audi-ASC Incorporated                        0.9988
## Audi-Aston Martin                            0.0001
# Transmission
TukeyHSD(modeltrf, ordered = FALSE, conf.level = 0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = cty ~ (trans) + fuel, data = L)
## 
## $trans
##                                       diff      lwr       upr  p adj
## Auto(AM6)-Auto(AM-S6)           -9.800e+00 -18.0132  -1.58684 0.0049
## Auto(AM7)-Auto(AM-S6)           -9.800e+00 -16.3852  -3.21482 0.0001
## Auto(AV-S7)-Auto(AM-S6)          1.520e+01   5.7906  24.60936 0.0000
## Automatic (S4)-Auto(AM-S6)      -8.400e+00 -15.5128  -1.28719 0.0057
## Automatic (S5)-Auto(AM-S6)      -5.066e+00 -10.2879   0.15666 0.0682
## Automatic (S6)-Auto(AM-S6)      -7.347e+00 -12.5411  -2.15221 0.0002
## Automatic (S7)-Auto(AM-S6)       4.200e+00  -8.1197  16.51974 0.9980
## Automatic 3-spd-Auto(AM-S6)     -8.897e+00 -14.1252  -3.66839 0.0000
## Automatic 4-spd-Auto(AM-S6)     -6.901e+00 -12.0560  -1.74605 0.0006
## Automatic 5-spd-Auto(AM-S6)     -1.063e+01 -16.6197  -4.64701 0.0000
## Automatic 6-spd-Auto(AM-S6)     -1.280e+01 -25.1197  -0.48026 0.0327
## Manual 4-spd-Auto(AM-S6)        -6.550e+00 -12.9614  -0.13860 0.0396
## Manual 5-spd-Auto(AM-S6)        -6.498e+00 -11.5998  -1.39558 0.0016
## Manual 6-spd-Auto(AM-S6)        -8.431e+00 -13.6080  -3.25391 0.0000
## Auto(AM7)-Auto(AM6)             -1.954e-14  -7.7607   7.76071 1.0000
## Auto(AV-S7)-Auto(AM6)            2.500e+01  14.7335  35.26645 0.0000
## Automatic (S4)-Auto(AM6)         1.400e+00  -6.8132   9.61316 1.0000
## Automatic (S5)-Auto(AM6)         4.734e+00  -1.9091  11.37789 0.4955
## Automatic (S6)-Auto(AM6)         2.453e+00  -4.1683   9.07500 0.9953
## Automatic (S7)-Auto(AM6)         1.400e+01   1.0138  26.98615 0.0209
## Automatic 3-spd-Auto(AM6)        9.032e-01  -5.7451   7.55154 1.0000
## Automatic 4-spd-Auto(AM6)        2.899e+00  -3.6917   9.48971 0.9762
## Automatic 5-spd-Auto(AM6)       -8.333e-01  -8.0928   6.42615 1.0000
## Automatic 6-spd-Auto(AM6)       -3.000e+00 -15.9862   9.98615 1.0000
## Manual 4-spd-Auto(AM6)           3.250e+00  -4.3638  10.86381 0.9818
## Manual 5-spd-Auto(AM6)           3.302e+00  -3.2471   9.85178 0.9273
## Manual 6-spd-Auto(AM6)           1.369e+00  -5.2390   7.97705 1.0000
## Auto(AV-S7)-Auto(AM7)            2.500e+01  15.9829  34.01713 0.0000
## Automatic (S4)-Auto(AM7)         1.400e+00  -5.1852   7.98518 1.0000
## Automatic (S5)-Auto(AM7)         4.734e+00   0.2572   9.21152 0.0265
## Automatic (S6)-Auto(AM7)         2.453e+00  -1.9913   6.89799 0.8624
## Automatic (S7)-Auto(AM7)         1.400e+01   1.9772  26.02284 0.0071
## Automatic 3-spd-Auto(AM7)        9.032e-01  -3.5810   5.38749 1.0000
## Automatic 4-spd-Auto(AM7)        2.899e+00  -1.4994   7.29742 0.6320
## Automatic 5-spd-Auto(AM7)       -8.333e-01  -6.1820   4.51537 1.0000
## Automatic 6-spd-Auto(AM7)       -3.000e+00 -15.0228   9.02284 0.9999
## Manual 4-spd-Auto(AM7)           3.250e+00  -2.5705   9.07053 0.8517
## Manual 5-spd-Auto(AM7)           3.302e+00  -1.0340   7.63868 0.3761
## Manual 6-spd-Auto(AM7)           1.369e+00  -3.0552   5.79333 0.9993
## Automatic (S4)-Auto(AV-S7)      -2.360e+01 -33.0094 -14.19064 0.0000
## Automatic (S5)-Auto(AV-S7)      -2.027e+01 -28.3413 -12.18996 0.0000
## Automatic (S6)-Auto(AV-S7)      -2.255e+01 -30.6044 -14.48897 0.0000
## Automatic (S7)-Auto(AV-S7)      -1.100e+01 -24.7739   2.77389 0.2953
## Automatic 3-spd-Auto(AV-S7)     -2.410e+01 -32.1764 -16.01717 0.0000
## Automatic 4-spd-Auto(AV-S7)     -2.210e+01 -30.1333 -14.06872 0.0000
## Automatic 5-spd-Auto(AV-S7)     -2.583e+01 -34.4229 -17.24380 0.0000
## Automatic 6-spd-Auto(AV-S7)     -2.800e+01 -41.7739 -14.22611 0.0000
## Manual 4-spd-Auto(AV-S7)        -2.175e+01 -30.6410 -12.85899 0.0000
## Manual 5-spd-Auto(AV-S7)        -2.170e+01 -29.6961 -13.69921 0.0000
## Manual 6-spd-Auto(AV-S7)        -2.363e+01 -31.6774 -15.58448 0.0000
## Automatic (S5)-Automatic (S4)    3.334e+00  -1.8879   8.55666 0.6830
## Automatic (S6)-Automatic (S4)    1.053e+00  -4.1411   6.24779 1.0000
## Automatic (S7)-Automatic (S4)    1.260e+01   0.2803  24.91974 0.0391
## Automatic 3-spd-Automatic (S4)  -4.968e-01  -5.7252   4.73161 1.0000
## Automatic 4-spd-Automatic (S4)   1.499e+00  -3.6560   6.65395 0.9997
## Automatic 5-spd-Automatic (S4)  -2.233e+00  -8.2197   3.75299 0.9950
## Automatic 6-spd-Automatic (S4)  -4.400e+00 -16.7197   7.91974 0.9968
## Manual 4-spd-Automatic (S4)      1.850e+00  -4.5614   8.26140 0.9997
## Manual 5-spd-Automatic (S4)      1.902e+00  -3.1998   7.00442 0.9950
## Manual 6-spd-Automatic (S4)     -3.095e-02  -5.2080   5.14609 1.0000
## Automatic (S6)-Automatic (S5)   -2.281e+00  -4.1948  -0.36724 0.0050
## Automatic (S7)-Automatic (S5)    9.266e+00  -2.0682  20.59948 0.2582
## Automatic 3-spd-Automatic (S5)  -3.831e+00  -5.8352  -1.82709 0.0000
## Automatic 4-spd-Automatic (S5)  -1.835e+00  -3.6392  -0.03155 0.0414
## Automatic 5-spd-Automatic (S5)  -5.568e+00  -9.1055  -2.02988 0.0000
## Automatic 6-spd-Automatic (S5)  -7.734e+00 -19.0682   3.59948 0.5727
## Manual 4-spd-Automatic (S5)     -1.484e+00  -5.7018   2.73300 0.9973
## Manual 5-spd-Automatic (S5)     -1.432e+00  -3.0787   0.21464 0.1719
## Manual 6-spd-Automatic (S5)     -3.365e+00  -5.2313  -1.49932 0.0000
## Automatic (S7)-Automatic (S6)    1.155e+01   0.2256  22.86773 0.0404
## Automatic 3-spd-Automatic (S6)  -1.550e+00  -3.4805   0.38028 0.2864
## Automatic 4-spd-Automatic (S6)   4.457e-01  -1.2760   2.16728 0.9999
## Automatic 5-spd-Automatic (S6)  -3.287e+00  -6.7833   0.20996 0.0916
## Automatic 6-spd-Automatic (S6)  -5.453e+00 -16.7744   5.86773 0.9490
## Manual 4-spd-Automatic (S6)      7.967e-01  -3.3862   4.97954 1.0000
## Manual 5-spd-Automatic (S6)      8.490e-01  -0.7072   2.40519 0.8726
## Manual 6-spd-Automatic (S6)     -1.084e+00  -2.8709   0.70236 0.7563
## Automatic 3-spd-Automatic (S7)  -1.310e+01 -24.4334  -1.76010 0.0080
## Automatic 4-spd-Automatic (S7)  -1.110e+01 -22.4040   0.20198 0.0603
## Automatic 5-spd-Automatic (S7)  -1.483e+01 -26.5389  -3.12778 0.0017
## Automatic 6-spd-Automatic (S7)  -1.700e+01 -32.9047  -1.09528 0.0232
## Manual 4-spd-Automatic (S7)     -1.075e+01 -22.6785   1.17854 0.1311
## Manual 5-spd-Automatic (S7)     -1.070e+01 -21.9767   0.58131 0.0844
## Manual 6-spd-Automatic (S7)     -1.263e+01 -23.9440  -1.31787 0.0131
## Automatic 4-spd-Automatic 3-spd  1.996e+00   0.1743   3.81719 0.0169
## Automatic 5-spd-Automatic 3-spd -1.737e+00  -5.2834   1.81027 0.9420
## Automatic 6-spd-Automatic 3-spd -3.903e+00 -15.2399   7.43344 0.9978
## Manual 4-spd-Automatic 3-spd     2.347e+00  -1.8782   6.57170 0.8566
## Manual 5-spd-Automatic 3-spd     2.399e+00   0.7332   4.06504 0.0001
## Manual 6-spd-Automatic 3-spd     4.658e-01  -1.4172   2.34883 1.0000
## Automatic 5-spd-Automatic 4-spd -3.732e+00  -7.1700  -0.29465 0.0190
## Automatic 6-spd-Automatic 4-spd -5.899e+00 -17.2020   5.40400 0.9063
## Manual 4-spd-Automatic 4-spd     3.510e-01  -3.7827   4.48472 1.0000
## Manual 5-spd-Automatic 4-spd     4.033e-01  -1.0154   1.82211 0.9997
## Manual 6-spd-Automatic 4-spd    -1.530e+00  -3.1983   0.13838 0.1136
## Automatic 6-spd-Automatic 5-spd -2.167e+00 -13.8722   9.53889 1.0000
## Manual 4-spd-Automatic 5-spd     4.083e+00  -1.0499   9.21656 0.3017
## Manual 5-spd-Automatic 5-spd     4.136e+00   0.7778   7.49354 0.0029
## Manual 6-spd-Automatic 5-spd     2.202e+00  -1.2683   5.67308 0.6924
## Manual 4-spd-Automatic 6-spd     6.250e+00  -5.6785  18.17854 0.9037
## Manual 5-spd-Automatic 6-spd     6.302e+00  -4.9767  17.58131 0.8510
## Manual 6-spd-Automatic 6-spd     4.369e+00  -6.9440  15.68213 0.9930
## Manual 5-spd-Manual 4-spd        5.233e-02  -4.0153   4.11992 1.0000
## Manual 6-spd-Manual 4-spd       -1.881e+00  -6.0422   2.28026 0.9699
## Manual 6-spd-Manual 5-spd       -1.933e+00  -3.4303  -0.43626 0.0012
## 
## $fuel
##                     diff       lwr    upr p adj
## Premium-Diesel  -12.0539 -15.95412 -8.154 0.000
## Regular-Diesel  -11.3542 -15.26766 -7.441 0.000
## Regular-Premium   0.6997   0.04471  1.355 0.033
TukeyHSD(modeltrm, ordered = FALSE, conf.level = 0.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = cty ~ (trans) + make, data = L)
## 
## $trans
##                                       diff      lwr      upr  p adj
## Auto(AM6)-Auto(AM-S6)           -9.800e+00 -15.5061  -4.0939 0.0000
## Auto(AM7)-Auto(AM-S6)           -9.800e+00 -14.3750  -5.2250 0.0000
## Auto(AV-S7)-Auto(AM-S6)          1.520e+01   8.6629  21.7371 0.0000
## Automatic (S4)-Auto(AM-S6)      -8.400e+00 -13.3416  -3.4584 0.0000
## Automatic (S5)-Auto(AM-S6)      -5.066e+00  -8.6938  -1.4375 0.0002
## Automatic (S6)-Auto(AM-S6)      -7.347e+00 -10.9555  -3.7378 0.0000
## Automatic (S7)-Auto(AM-S6)       4.200e+00  -4.3591  12.7591 0.9409
## Automatic 3-spd-Auto(AM-S6)     -8.897e+00 -12.5292  -5.2644 0.0000
## Automatic 4-spd-Auto(AM-S6)     -6.901e+00 -10.4824  -3.3196 0.0000
## Automatic 5-spd-Auto(AM-S6)     -1.063e+01 -14.7923  -6.4743 0.0000
## Automatic 6-spd-Auto(AM-S6)     -1.280e+01 -21.3591  -4.2409 0.0000
## Manual 4-spd-Auto(AM-S6)        -6.550e+00 -11.0043  -2.0957 0.0001
## Manual 5-spd-Auto(AM-S6)        -6.498e+00 -10.0423  -2.9530 0.0000
## Manual 6-spd-Auto(AM-S6)        -8.431e+00 -12.0277  -4.8342 0.0000
## Auto(AM7)-Auto(AM6)             -1.954e-14  -5.3917   5.3917 1.0000
## Auto(AV-S7)-Auto(AM6)            2.500e+01  17.8674  32.1326 0.0000
## Automatic (S4)-Auto(AM6)         1.400e+00  -4.3061   7.1061 1.0000
## Automatic (S5)-Auto(AM6)         4.734e+00   0.1188   9.3499 0.0379
## Automatic (S6)-Auto(AM6)         2.453e+00  -2.1471   7.0537 0.8909
## Automatic (S7)-Auto(AM6)         1.400e+01   4.9779  23.0221 0.0000
## Automatic 3-spd-Auto(AM6)        9.032e-01  -3.7157   5.5221 1.0000
## Automatic 4-spd-Auto(AM6)        2.899e+00  -1.6799   7.4779 0.6958
## Automatic 5-spd-Auto(AM6)       -8.333e-01  -5.8768   4.2102 1.0000
## Automatic 6-spd-Auto(AM6)       -3.000e+00 -12.0221   6.0221 0.9985
## Manual 4-spd-Auto(AM6)           3.250e+00  -2.0397   8.5397 0.7395
## Manual 5-spd-Auto(AM6)           3.302e+00  -1.2479   7.8525 0.4624
## Manual 6-spd-Auto(AM6)           1.369e+00  -3.2219   5.9599 0.9996
## Auto(AV-S7)-Auto(AM7)            2.500e+01  18.7354  31.2646 0.0000
## Automatic (S4)-Auto(AM7)         1.400e+00  -3.1750   5.9750 0.9994
## Automatic (S5)-Auto(AM7)         4.734e+00   1.6239   7.8449 0.0000
## Automatic (S6)-Auto(AM7)         2.453e+00  -0.6346   5.5413 0.3037
## Automatic (S7)-Auto(AM7)         1.400e+01   5.6472  22.3528 0.0000
## Automatic 3-spd-Auto(AM7)        9.032e-01  -2.2122   4.0187 0.9997
## Automatic 4-spd-Auto(AM7)        2.899e+00  -0.1568   5.9548 0.0842
## Automatic 5-spd-Auto(AM7)       -8.333e-01  -4.5493   2.8827 1.0000
## Automatic 6-spd-Auto(AM7)       -3.000e+00 -11.3528   5.3528 0.9966
## Manual 4-spd-Auto(AM7)           3.250e+00  -0.7938   7.2938 0.2850
## Manual 5-spd-Auto(AM7)           3.302e+00   0.2897   6.3150 0.0168
## Manual 6-spd-Auto(AM7)           1.369e+00  -1.7047   4.4428 0.9735
## Automatic (S4)-Auto(AV-S7)      -2.360e+01 -30.1371 -17.0629 0.0000
## Automatic (S5)-Auto(AV-S7)      -2.027e+01 -25.8762 -14.6551 0.0000
## Automatic (S6)-Auto(AV-S7)      -2.255e+01 -28.1447 -16.9486 0.0000
## Automatic (S7)-Auto(AV-S7)      -1.100e+01 -20.5694  -1.4306 0.0087
## Automatic 3-spd-Auto(AV-S7)     -2.410e+01 -29.7101 -18.4835 0.0000
## Automatic 4-spd-Auto(AV-S7)     -2.210e+01 -27.6814 -16.5206 0.0000
## Automatic 5-spd-Auto(AV-S7)     -2.583e+01 -31.8009 -19.8658 0.0000
## Automatic 6-spd-Auto(AV-S7)     -2.800e+01 -37.5694 -18.4306 0.0000
## Manual 4-spd-Auto(AV-S7)        -2.175e+01 -27.9270 -15.5730 0.0000
## Manual 5-spd-Auto(AV-S7)        -2.170e+01 -27.2546 -16.1408 0.0000
## Manual 6-spd-Auto(AV-S7)        -2.363e+01 -29.2212 -18.0407 0.0000
## Automatic (S5)-Automatic (S4)    3.334e+00  -0.2938   6.9625 0.1115
## Automatic (S6)-Automatic (S4)    1.053e+00  -2.5555   4.6622 0.9997
## Automatic (S7)-Automatic (S4)    1.260e+01   4.0409  21.1591 0.0001
## Automatic 3-spd-Automatic (S4)  -4.968e-01  -4.1292   3.1356 1.0000
## Automatic 4-spd-Automatic (S4)   1.499e+00  -2.0824   5.0804 0.9848
## Automatic 5-spd-Automatic (S4)  -2.233e+00  -6.3923   1.9257 0.8856
## Automatic 6-spd-Automatic (S4)  -4.400e+00 -12.9591   4.1591 0.9160
## Manual 4-spd-Automatic (S4)      1.850e+00  -2.6043   6.3043 0.9859
## Manual 5-spd-Automatic (S4)      1.902e+00  -1.6423   5.4470 0.8860
## Manual 6-spd-Automatic (S4)     -3.095e-02  -3.6277   3.5658 1.0000
## Automatic (S6)-Automatic (S5)   -2.281e+00  -3.6107  -0.9514 0.0000
## Automatic (S7)-Automatic (S5)    9.266e+00   1.3914  17.1398 0.0061
## Automatic 3-spd-Automatic (S5)  -3.831e+00  -5.2235  -2.4388 0.0000
## Automatic 4-spd-Automatic (S5)  -1.835e+00  -3.0886  -0.5822 0.0001
## Automatic 5-spd-Automatic (S5)  -5.568e+00  -8.0256  -3.1098 0.0000
## Automatic 6-spd-Automatic (S5)  -7.734e+00 -15.6086   0.1398 0.0602
## Manual 4-spd-Automatic (S5)     -1.484e+00  -4.4144   1.4456 0.9246
## Manual 5-spd-Automatic (S5)     -1.432e+00  -2.5761  -0.2880 0.0022
## Manual 6-spd-Automatic (S5)     -3.365e+00  -4.6617  -2.0689 0.0000
## Automatic (S7)-Automatic (S6)    1.155e+01   3.6814  19.4120 0.0001
## Automatic 3-spd-Automatic (S6)  -1.550e+00  -2.8912  -0.2090 0.0080
## Automatic 4-spd-Automatic (S6)   4.457e-01  -0.7504   1.6417 0.9951
## Automatic 5-spd-Automatic (S6)  -3.287e+00  -5.7159  -0.8574 0.0005
## Automatic 6-spd-Automatic (S6)  -5.453e+00 -13.3186   2.4120 0.5446
## Manual 4-spd-Automatic (S6)      7.967e-01  -2.1094   3.7027 0.9998
## Manual 5-spd-Automatic (S6)      8.490e-01  -0.2322   1.9302 0.3232
## Manual 6-spd-Automatic (S6)     -1.084e+00  -2.3256   0.1570 0.1664
## Automatic 3-spd-Automatic (S7)  -1.310e+01 -20.9729  -5.2206 0.0000
## Automatic 4-spd-Automatic (S7)  -1.110e+01 -18.9537  -3.2483 0.0002
## Automatic 5-spd-Automatic (S7)  -1.483e+01 -22.9657  -6.7009 0.0000
## Automatic 6-spd-Automatic (S7)  -1.700e+01 -28.0498  -5.9502 0.0000
## Manual 4-spd-Automatic (S7)     -1.075e+01 -19.0373  -2.4627 0.0011
## Manual 5-spd-Automatic (S7)     -1.070e+01 -18.5337  -2.8616 0.0004
## Manual 6-spd-Automatic (S7)     -1.263e+01 -20.4907  -4.7712 0.0000
## Automatic 4-spd-Automatic 3-spd  1.996e+00   0.7303   3.2612 0.0000
## Automatic 5-spd-Automatic 3-spd -1.737e+00  -4.2007   0.7276 0.5155
## Automatic 6-spd-Automatic 3-spd -3.903e+00 -11.7794   3.9729 0.9362
## Manual 4-spd-Automatic 3-spd     2.347e+00  -0.5885   5.2820 0.2934
## Manual 5-spd-Automatic 3-spd     2.399e+00   1.2417   3.5565 0.0000
## Manual 6-spd-Automatic 3-spd     4.658e-01  -0.8424   1.7740 0.9969
## Automatic 5-spd-Automatic 4-spd -3.732e+00  -6.1206  -1.3440 0.0000
## Automatic 6-spd-Automatic 4-spd -5.899e+00 -13.7517   1.9537 0.4004
## Manual 4-spd-Automatic 4-spd     3.510e-01  -2.5209   3.2229 1.0000
## Manual 5-spd-Automatic 4-spd     4.033e-01  -0.5824   1.3890 0.9877
## Manual 6-spd-Automatic 4-spd    -1.530e+00  -2.6890  -0.3709 0.0008
## Automatic 6-spd-Automatic 5-spd -2.167e+00 -10.2991   5.9657 0.9999
## Manual 4-spd-Automatic 5-spd     4.083e+00   0.5170   7.6496 0.0092
## Manual 5-spd-Automatic 5-spd     4.136e+00   1.8028   6.4685 0.0000
## Manual 6-spd-Automatic 5-spd     2.202e+00  -0.2089   4.6136 0.1175
## Manual 4-spd-Automatic 6-spd     6.250e+00  -2.0373  14.5373 0.3933
## Manual 5-spd-Automatic 6-spd     6.302e+00  -1.5337  14.1384 0.2838
## Manual 6-spd-Automatic 6-spd     4.369e+00  -3.4907  12.2288 0.8559
## Manual 5-spd-Manual 4-spd        5.233e-02  -2.7736   2.8783 1.0000
## Manual 6-spd-Manual 4-spd       -1.881e+00  -4.7719   1.0100 0.6531
## Manual 6-spd-Manual 5-spd       -1.933e+00  -2.9733  -0.8932 0.0000
## 
## $make
##                                                 diff      lwr     upr
## Alfa Romeo-Acura                             -1.3510  -2.5139 -0.1880
## AM General-Acura                             -1.1112  -3.9128  1.6904
## American Motors Corporation-Acura            -1.5655  -2.9356 -0.1953
## ASC Incorporated-Acura                       -4.2736 -11.0734  2.5261
## Aston Martin-Acura                           -5.9335  -6.6967 -5.1702
## Audi-Acura                                   -0.3722  -1.0699  0.3255
## AM General-Alfa Romeo                         0.2398  -2.7366  3.2161
## American Motors Corporation-Alfa Romeo       -0.2145  -1.9137  1.4847
## ASC Incorporated-Alfa Romeo                  -2.9227  -9.7963  3.9510
## Aston Martin-Alfa Romeo                      -4.5825  -5.8444 -3.3206
## Audi-Alfa Romeo                               0.9788  -0.2446  2.2022
## American Motors Corporation-AM General       -0.4543  -3.5175  2.6090
## ASC Incorporated-AM General                  -3.1624 -10.4934  4.1685
## Aston Martin-AM General                      -4.8223  -7.6664 -1.9782
## Audi-AM General                               0.7390  -2.0882  3.5662
## ASC Incorporated-American Motors Corporation -2.7082  -9.6199  4.2035
## Aston Martin-American Motors Corporation     -4.3680  -5.8231 -2.9129
## Audi-American Motors Corporation              1.1933  -0.2286  2.6151
## Aston Martin-ASC Incorporated                -1.6598  -8.4772  5.1576
## Audi-ASC Incorporated                         3.9014  -2.9089 10.7118
## Audi-Aston Martin                             5.5613   4.7087  6.4138
##                                               p adj
## Alfa Romeo-Acura                             0.0112
## AM General-Acura                             0.9039
## American Motors Corporation-Acura            0.0136
## ASC Incorporated-Acura                       0.5082
## Aston Martin-Acura                           0.0000
## Audi-Acura                                   0.6963
## AM General-Alfa Romeo                        1.0000
## American Motors Corporation-Alfa Romeo       0.9998
## ASC Incorporated-Alfa Romeo                  0.8706
## Aston Martin-Alfa Romeo                      0.0000
## Audi-Alfa Romeo                              0.2146
## American Motors Corporation-AM General       0.9995
## ASC Incorporated-AM General                  0.8626
## Aston Martin-AM General                      0.0000
## Audi-AM General                              0.9874
## ASC Incorporated-American Motors Corporation 0.9089
## Aston Martin-American Motors Corporation     0.0000
## Audi-American Motors Corporation             0.1673
## Aston Martin-ASC Incorporated                0.9913
## Audi-ASC Incorporated                        0.6197
## Audi-Aston Martin                            0.0000
# Plot the results
f1 = TukeyHSD(modelcylf, which="cyl", ordered = FALSE)
f2 = TukeyHSD(modeldrf, which="drive",ordered = FALSE)
f3= TukeyHSD(modeltrf, which="trans",ordered = FALSE)
plot(f1)

plot of chunk unnamed-chunk-10

plot(f2)

plot of chunk unnamed-chunk-10

plot(f3)

plot of chunk unnamed-chunk-10

m1 = TukeyHSD(modelcylm, which="cyl", ordered = FALSE)
m2 = TukeyHSD(modeldrm, which="drive",ordered = FALSE)
m3= TukeyHSD(modeltrm, which="trans",ordered = FALSE)
plot(m1)

plot of chunk unnamed-chunk-10

plot(m2)

plot of chunk unnamed-chunk-10

plot(m3)

plot of chunk unnamed-chunk-10

Results

There is a significant difference in mean between almost all levels of ‘number of cylinders’ except for just 2 pairs that have negligible difference in means. For the factor ‘drive’ there are just 3 pairs that have significant difference in means, rest all other pairs have not much difference.Transmission type also shows that there is no significant difference in means for most of the pairs. However there is are some levels for ‘Automatic’ transmission types that do deviate from other levels with a significant difference.

In conclusion, there exists a significant difference in many pairs of the treatment levels for all three factors.However, the number of pairs that do not show a significant difference in means are more, therefore we can conclude that our testing is appropriate.

5. Appendices

The data from the fueleconomy data set is available at https://github.com/hadley/fueleconomy.