Reading the data set and calculating summary statistics :

store.df <- read.csv(paste("Store24.csv", sep=""))
View(store.df)
summary(store.df)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

TASK 4d Three very important variables in this analysis are the store Profit, the management tenure (MTenure) and the crew tenure (CTenure). 1. Use R to measure the mean and standard deviation of Profit. 2. Use R to measure the mean and standard deviation of MTenure. 3. Use R to measure the mean and standard deviation of CTenure.

mean(store.df$Profit)
## [1] 276313.6
sd(store.df$Profit)
## [1] 89404.08
mean(store.df$MTenure)
## [1] 45.29644
sd(store.df$MTenure)
## [1] 57.67155
mean(store.df$CTenure)
## [1] 13.9315
sd(store.df$CTenure)
## [1] 17.69752

TASK 4f Replicate Exhibit 1 shown in the case, using R 1. Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 most profitable stores.

datadesc <- store.df[order(-store.df$Profit),]
datadesc[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550

2.Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the bottom 10 least profitable stores.

temp <- tail(datadesc,10)
temp[,1:5]
##    store   Sales Profit     MTenure   CTenure
## 37    37 1202917 187765  23.1985000  1.347023
## 61    61  716589 177046  21.8184200 13.305950
## 52    52 1073008 169201  24.1185600  3.416838
## 54    54  811190 159792   6.6703910  3.876797
## 13    13  857843 152513   0.6571813  1.577002
## 32    32  828918 149033  36.0792600  6.636550
## 55    55  925744 147672   6.6703910 18.365500
## 41    41  744211 147327  14.9180200 11.926080
## 66    66  879581 146058 115.2039000  3.876797
## 57    57  699306 122180  24.3485700  2.956879

TASK 4g - Scatter Plots Use R to draw a scatter plot of Profit vs. MTenure.

plot(store.df$MTenure, store.df$Profit, 
     col="blue",
     main="Scatterplot of Profit vs. MTenure",
     xlab="MTenure", ylab="Profit")
abline(lm(store.df$Profit ~ store.df$MTenure),col="green")

TASK 4h - Scatter Plots (contd.) Use R to draw a scatter plot of Profit vs. CTenure.

plot(store.df$CTenure, store.df$Profit, 
     col="blue",
     main="Scatterplot of Profit vs. CTenure",
     xlab="CTenure", ylab="Profit")
abline(lm(store.df$Profit ~ store.df$CTenure),col="green")

TASK 4i - Correlation Matrix Use R to construct a Correlation Matrix for all the variables in the dataset. (Display the numbers up to 2 Decimal places)

round(cor(store.df),2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

TASK 4j - Correlations Use R to measure the correlation between Profit and MTenure. (Display the numbers up to 2 Decimal places)

round(cor(store.df$MTenure, store.df$Profit),2)
## [1] 0.44

Use R to measure the correlation between Profit and CTenure. (Display the numbers up to 2 Decimal places)

round(cor(store.df$CTenure, store.df$Profit),2)
## [1] 0.26

TASK 4k Use R to construct the following Corrgram based on all variables in the dataset.

library(corrgram)
corrgram(store.df, order=TRUE, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="Corrgram of store variables")

ASK 4l - Pearson???s Correlation Tests Run a Pearson’s Correlation test on the correlation between Profit and MTenure. What is the p-value?

cor.test(store.df[,"Profit"], store.df[,"MTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store.df[, "Profit"] and store.df[, "MTenure"]
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

p-value = 8.193e-05

Run a Pearson’s Correlation test on the correlation between Profit and CTenure. What is the p-value?

cor.test(store.df[,"Profit"], store.df[,"CTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store.df[, "Profit"] and store.df[, "CTenure"]
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

p-value = 0.02562

TASK 3m - Regression Analysis Run a regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.

fit <- lm(Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility, data = store.df)
summary(fit)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

TASK 4n Based on TASK 3m, answer the following questions: 1. List the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05). MTenure, CTenure, Comp, Pop, PedCount, Res, Hours24

List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05). Visibility TASK 4o Based on TASK 2m, answer the following questions: 1. What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?

The expected increase in Profit at the store if the Manager’s tenure increases by one month is : 760.993

What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month? The expected increase in Profit at the store if the Crew’s tenure increases by one month is : 944.978

SUMMARY

As we can now see from the analysis which we have done above, it is clear that, the managerial tenure and crew tenure results in financial gain. While site-location factors such as population, number of competitors, and pedestrian access are considered the primary get going of store success, our case study shows that increased skills in managers and the crew as well as the service quality has resulted in greater profits. We can also see from the Corrgram that there is a very strong correlation between Profit and Managerial tenure as well as Crew Tenure. From the regression analysis, we observe that p-value: 5.382e-12. Hence there is a chance we can predict the Profit if we are provided with the other variables. We also see that Visibility is a factor that does not affect the Profit that much since its p-value = 0.169411 (>0.05). Hence Visibility should be excluded. The result also shows us that there is a need for more variables in order to have a better prediction. We also see that with the increase in tenure of managers by one month, the Profits will increase by 760.993. And, with the increase in tenure of crew by one month, the Profits will increase by 944.978.