##1 Correspondence analysis 對應分析

#讀資料
#ftbl是一個列聯表
ftbl <- read.ftable('103death.txt',skip=1,row.var.names = "性別年齡組",
                    col.vars = list('死因' =c('惡性腫瘤','心臟疾病','腦血管疾病','肺炎','事故傷害','糖尿病','慢性下呼吸道','慢性肝','高血壓','腎'))) 
#將列連表恢復成原來的資料
library(vcdExtra)
## Loading required package: vcd
## Loading required package: grid
## Loading required package: gnm
dtaraw <- expand.dft(as.data.frame(ftbl),freq='Freq')

mytable <- with(dtaraw, table(性別年齡組,死因)) # create a 2 way table

prop.table(mytable, 1) # row percentages
##           死因
## 性別年齡組    心臟疾病    事故傷害        肺炎      高血壓    惡性腫瘤
##   女_0     0.120000000 0.120000000 0.060000000 0.000000000 0.040000000
##   女_1-4   0.145833333 0.041666667 0.041666667 0.020833333 0.229166667
##   女_10-14 0.116279070 0.046511628 0.023255814 0.023255814 0.372093023
##   女_15-19 0.040404040 0.030303030 0.010101010 0.000000000 0.171717172
##   女_20-24 0.069306931 0.019801980 0.019801980 0.019801980 0.257425743
##   女_25-29 0.151515152 0.015151515 0.037878788 0.007575758 0.340909091
##   女_30-34 0.091254753 0.030418251 0.072243346 0.015209125 0.494296578
##   女_35-39 0.097065463 0.027088036 0.060948081 0.013544018 0.541760722
##   女_40-44 0.074820144 0.012949640 0.071942446 0.008633094 0.660431655
##   女_45-49 0.078202995 0.024126456 0.068219634 0.004159734 0.678036606
##   女_5-9   0.090909091 0.000000000 0.000000000 0.000000000 0.575757576
##   女_50-54 0.071355236 0.022073922 0.051848049 0.009240246 0.687885010
##   女_55-59 0.080603607 0.022451233 0.062200957 0.006624954 0.654398233
##   女_60-64 0.105590062 0.029872819 0.060041408 0.016267377 0.563738539
##   女_65-69 0.126412214 0.036030534 0.065954198 0.017099237 0.492213740
##   女_70-74 0.130092779 0.050221864 0.085316660 0.019766035 0.438079871
##   女_75-79 0.159159591 0.064901425 0.102748597 0.033386099 0.346668585
##   女_80-84 0.181883537 0.088305775 0.118619698 0.043973161 0.274622574
##   女_85-89 0.210132269 0.123034689 0.120164712 0.052283504 0.188794609
##   女_90+   0.232502966 0.181939502 0.116251483 0.065539739 0.120996441
##   男_0     0.166666667 0.454545455 0.212121212 0.000000000 0.030303030
##   男_1-4   0.108695652 0.282608696 0.043478261 0.000000000 0.434782609
##   男_10-14 0.100000000 0.471428571 0.028571429 0.000000000 0.342857143
##   男_15-19 0.041825095 0.836501901 0.000000000 0.000000000 0.098859316
##   男_20-24 0.061728395 0.743827160 0.018518519 0.003086420 0.148148148
##   男_25-29 0.089337176 0.547550432 0.017291066 0.008645533 0.198847262
##   男_30-34 0.128032345 0.358490566 0.018867925 0.018867925 0.253369272
##   男_35-39 0.140337987 0.224834680 0.024981631 0.025716385 0.280675974
##   男_40-44 0.141713748 0.148305085 0.021657250 0.021186441 0.380885122
##   男_45-49 0.130199430 0.109116809 0.020797721 0.019658120 0.438176638
##   男_5-9   0.060000000 0.520000000 0.000000000 0.000000000 0.380000000
##   男_50-54 0.139355884 0.078387685 0.026331780 0.028964958 0.464249544
##   男_55-59 0.131964316 0.066150480 0.027436459 0.030129608 0.487796667
##   男_60-64 0.143467730 0.062402052 0.034762787 0.025502208 0.493232654
##   男_65-69 0.137936717 0.049110086 0.047132498 0.030158207 0.471324984
##   男_70-74 0.137606397 0.051586278 0.062677328 0.032757287 0.433711633
##   男_75-79 0.143583508 0.041229137 0.085995358 0.034376036 0.380236543
##   男_80-84 0.157827939 0.033541837 0.117577735 0.042788505 0.307769015
##   男_85-89 0.176274510 0.026470588 0.151666667 0.055686275 0.250588235
##   男_90+   0.189805500 0.026659960 0.197350771 0.061871227 0.182092555
##           死因
## 性別年齡組          腎  腦血管疾病 慢性下呼吸道      慢性肝      糖尿病
##   女_0     0.100000000 0.000000000  0.020000000 0.540000000 0.000000000
##   女_1-4   0.041666667 0.000000000  0.020833333 0.458333333 0.000000000
##   女_10-14 0.023255814 0.000000000  0.046511628 0.325581395 0.023255814
##   女_15-19 0.010101010 0.010101010  0.000000000 0.727272727 0.000000000
##   女_20-24 0.019801980 0.049504950  0.029702970 0.514851485 0.000000000
##   女_25-29 0.015151515 0.022727273  0.045454545 0.356060606 0.007575758
##   女_30-34 0.011406844 0.030418251  0.011406844 0.231939163 0.011406844
##   女_35-39 0.015801354 0.056433409  0.018058691 0.155756208 0.013544018
##   女_40-44 0.015827338 0.025899281  0.020143885 0.093525180 0.015827338
##   女_45-49 0.013311148 0.029950083  0.015806988 0.076539101 0.011647255
##   女_5-9   0.000000000 0.000000000  0.000000000 0.333333333 0.000000000
##   女_50-54 0.012320329 0.046714579  0.021047228 0.054414784 0.023100616
##   女_55-59 0.015458226 0.058520427  0.032388664 0.047478837 0.019874862
##   女_60-64 0.017450458 0.087252292  0.038745933 0.057675244 0.023365868
##   女_65-69 0.021374046 0.109007634  0.047633588 0.050381679 0.033893130
##   女_70-74 0.021379589 0.124445341  0.050423558 0.040540541 0.039733764
##   女_75-79 0.030795798 0.124766153  0.055835372 0.031515326 0.050223054
##   女_80-84 0.030913012 0.124490774  0.052600048 0.022525761 0.062065660
##   女_85-89 0.039680559 0.114549538  0.056526079 0.018717245 0.076116796
##   女_90+   0.044039146 0.077698695  0.048042705 0.018831554 0.094157770
##   男_0     0.030303030 0.060606061  0.030303030 0.000000000 0.015151515
##   男_1-4   0.043478261 0.021739130  0.043478261 0.000000000 0.021739130
##   男_10-14 0.000000000 0.028571429  0.000000000 0.000000000 0.028571429
##   男_15-19 0.003802281 0.007604563  0.011406844 0.000000000 0.000000000
##   男_20-24 0.003086420 0.015432099  0.003086420 0.000000000 0.003086420
##   男_25-29 0.011527378 0.054755043  0.008645533 0.043227666 0.020172911
##   男_30-34 0.013477089 0.036388140  0.006738544 0.152291105 0.013477089
##   男_35-39 0.012490816 0.070536370  0.007347539 0.176340926 0.036737693
##   男_40-44 0.012711864 0.062146893  0.006591337 0.169962335 0.034839925
##   男_45-49 0.013105413 0.074358974  0.007977208 0.149002849 0.037606838
##   男_5-9   0.000000000 0.040000000  0.000000000 0.000000000 0.000000000
##   男_50-54 0.019850111 0.071298359  0.008912295 0.108365404 0.054283978
##   男_55-59 0.024743309 0.074061606  0.013129103 0.083655950 0.060932503
##   男_60-64 0.030773614 0.074939450  0.021940447 0.047727597 0.065251460
##   男_65-69 0.031806196 0.086354647  0.030652604 0.036750165 0.078773896
##   男_70-74 0.032628321 0.092210472  0.048620067 0.024116585 0.084085633
##   男_75-79 0.038244722 0.104233448  0.072068089 0.022548911 0.077484249
##   男_80-84 0.042969812 0.112138519  0.101713353 0.016045689 0.067627595
##   男_85-89 0.042549020 0.105392157  0.118725490 0.009901961 0.062745098
##   男_90+   0.045271630 0.103621730  0.135311871 0.007880617 0.050134138
prop.table(mytable, 2) # column percentages
##           死因
## 性別年齡組     心臟疾病     事故傷害         肺炎       高血壓
##   女_0     3.092784e-04 6.550934e-04 2.712477e-04 0.000000e+00
##   女_1-4   3.608247e-04 2.183645e-04 1.808318e-04 2.194908e-04
##   女_10-14 2.577320e-04 2.183645e-04 9.041591e-05 2.194908e-04
##   女_15-19 2.061856e-04 3.275467e-04 9.041591e-05 0.000000e+00
##   女_20-24 3.608247e-04 2.183645e-04 1.808318e-04 4.389816e-04
##   女_25-29 1.030928e-03 2.183645e-04 4.520796e-04 2.194908e-04
##   女_30-34 1.237113e-03 8.734578e-04 1.717902e-03 8.779631e-04
##   女_35-39 2.216495e-03 1.310187e-03 2.441230e-03 1.316945e-03
##   女_40-44 2.680412e-03 9.826400e-04 4.520796e-03 1.316945e-03
##   女_45-49 4.845361e-03 3.166285e-03 7.414105e-03 1.097454e-03
##   女_5-9   1.546392e-04 0.000000e+00 0.000000e+00 0.000000e+00
##   女_50-54 7.164948e-03 4.694836e-03 9.132007e-03 3.950834e-03
##   女_55-59 1.128866e-02 6.660116e-03 1.528029e-02 3.950834e-03
##   女_60-64 1.840206e-02 1.102740e-02 1.835443e-02 1.207199e-02
##   女_65-69 2.134021e-02 1.288350e-02 1.952984e-02 1.229148e-02
##   女_70-74 3.324742e-02 2.718637e-02 3.824593e-02 2.151010e-02
##   女_75-79 5.701031e-02 4.924118e-02 6.455696e-02 5.092186e-02
##   女_80-84 7.824742e-02 8.046730e-02 8.951175e-02 8.055312e-02
##   女_85-89 8.680412e-02 1.076537e-01 8.707052e-02 9.196664e-02
##   女_90+   8.082474e-02 1.339666e-01 7.088608e-02 9.701493e-02
##   男_0     5.670103e-04 3.275467e-03 1.265823e-03 0.000000e+00
##   男_1-4   2.577320e-04 1.419369e-03 1.808318e-04 0.000000e+00
##   男_10-14 3.608247e-04 3.603013e-03 1.808318e-04 0.000000e+00
##   男_15-19 5.670103e-04 2.402009e-02 0.000000e+00 0.000000e+00
##   男_20-24 1.030928e-03 2.631292e-02 5.424955e-04 2.194908e-04
##   男_25-29 1.597938e-03 2.074462e-02 5.424955e-04 6.584723e-04
##   男_30-34 4.896907e-03 2.904247e-02 1.265823e-03 3.072871e-03
##   男_35-39 9.845361e-03 3.340976e-02 3.074141e-03 7.682177e-03
##   男_40-44 1.551546e-02 3.439240e-02 4.159132e-03 9.877085e-03
##   男_45-49 2.355670e-02 4.181679e-02 6.600362e-03 1.514486e-02
##   男_5-9   1.546392e-04 2.838738e-03 0.000000e+00 0.000000e+00
##   男_50-54 3.546392e-02 4.225352e-02 1.175407e-02 3.138718e-02
##   男_55-59 4.041237e-02 4.290861e-02 1.473779e-02 3.928885e-02
##   男_60-64 5.190722e-02 4.782181e-02 2.206148e-02 3.928885e-02
##   男_65-69 4.314433e-02 3.253630e-02 2.585895e-02 4.016681e-02
##   男_70-74 5.500000e-02 4.367289e-02 4.394213e-02 5.575066e-02
##   男_75-79 6.695876e-02 4.072497e-02 7.034358e-02 6.826163e-02
##   男_80-84 8.974227e-02 4.039742e-02 1.172694e-01 1.035996e-01
##   男_85-89 9.268041e-02 2.947920e-02 1.398734e-01 1.246708e-01
##   男_90+   5.835052e-02 1.735997e-02 1.064195e-01 8.099210e-02
##           死因
## 性別年齡組     惡性腫瘤           腎   腦血管疾病 慢性下呼吸道
##   女_0     4.338865e-05 1.256597e-03 0.000000e+00 1.423285e-04
##   女_1-4   2.386376e-04 5.026389e-04 0.000000e+00 1.423285e-04
##   女_10-14 3.471092e-04 2.513194e-04 0.000000e+00 2.846570e-04
##   女_15-19 3.688036e-04 2.513194e-04 8.372405e-05 0.000000e+00
##   女_20-24 5.640525e-04 5.026389e-04 4.186202e-04 4.269855e-04
##   女_25-29 9.762447e-04 5.026389e-04 2.511721e-04 8.539710e-04
##   女_30-34 2.820263e-03 7.539583e-04 6.697924e-04 4.269855e-04
##   女_35-39 5.206638e-03 1.759236e-03 2.093101e-03 1.138628e-03
##   女_40-44 9.957696e-03 2.764514e-03 1.507033e-03 1.992599e-03
##   女_45-49 1.768088e-02 4.021111e-03 3.014066e-03 2.704241e-03
##   女_5-9   4.121922e-04 0.000000e+00 0.000000e+00 0.000000e+00
##   女_50-54 2.907040e-02 6.031666e-03 7.618888e-03 5.835468e-03
##   女_55-59 3.857251e-02 1.055542e-02 1.331212e-02 1.252491e-02
##   女_60-64 4.134939e-02 1.482785e-02 2.469859e-02 1.864503e-02
##   女_65-69 3.497126e-02 1.759236e-02 2.988948e-02 2.220325e-02
##   女_70-74 4.712008e-02 2.663986e-02 5.165774e-02 3.558212e-02
##   女_75-79 5.226163e-02 5.378236e-02 7.258875e-02 5.522346e-02
##   女_80-84 4.972340e-02 6.484041e-02 8.698928e-02 6.248221e-02
##   女_85-89 3.282352e-02 7.991958e-02 7.685867e-02 6.447481e-02
##   女_90+   1.770257e-02 7.464187e-02 4.387140e-02 4.611443e-02
##   男_0     4.338865e-05 5.026389e-04 3.348962e-04 2.846570e-04
##   男_1-4   4.338865e-04 5.026389e-04 8.372405e-05 2.846570e-04
##   男_10-14 5.206638e-04 0.000000e+00 1.674481e-04 0.000000e+00
##   男_15-19 5.640525e-04 2.513194e-04 1.674481e-04 4.269855e-04
##   男_20-24 1.041328e-03 2.513194e-04 4.186202e-04 1.423285e-04
##   男_25-29 1.496909e-03 1.005278e-03 1.590757e-03 4.269855e-04
##   男_30-34 4.078533e-03 2.513194e-03 2.260549e-03 7.116425e-04
##   男_35-39 8.287233e-03 4.272430e-03 8.037508e-03 1.423285e-03
##   男_40-44 1.755071e-02 6.785625e-03 1.105157e-02 1.992599e-03
##   男_45-49 3.336587e-02 1.156069e-02 2.185198e-02 3.985198e-03
##   男_5-9   4.121922e-04 0.000000e+00 1.674481e-04 0.000000e+00
##   男_50-54 4.972340e-02 2.462930e-02 2.947086e-02 6.262454e-03
##   男_55-59 6.287016e-02 3.694396e-02 3.683858e-02 1.110162e-02
##   男_60-64 7.510576e-02 5.428500e-02 4.403885e-02 2.191859e-02
##   男_65-69 6.204578e-02 4.850465e-02 4.387140e-02 2.647310e-02
##   男_70-74 7.295802e-02 6.358382e-02 5.986269e-02 5.365784e-02
##   男_75-79 7.462848e-02 8.695652e-02 7.895177e-02 9.279818e-02
##   男_80-84 7.365224e-02 1.191254e-01 1.035666e-01 1.596926e-01
##   男_85-89 5.545070e-02 1.090726e-01 9.000335e-02 1.723598e-01
##   男_90+   2.356004e-02 6.785625e-02 5.174146e-02 1.148591e-01
##           死因
## 性別年齡組       慢性肝       糖尿病
##   女_0     4.847397e-03 0.000000e+00
##   女_1-4   3.949731e-03 0.000000e+00
##   女_10-14 2.513465e-03 1.330495e-04
##   女_15-19 1.292639e-02 0.000000e+00
##   女_20-24 9.335727e-03 0.000000e+00
##   女_25-29 8.438061e-03 1.330495e-04
##   女_30-34 1.095153e-02 3.991485e-04
##   女_35-39 1.238779e-02 7.982970e-04
##   女_40-44 1.166966e-02 1.463544e-03
##   女_45-49 1.651706e-02 1.862693e-03
##   女_5-9   1.974865e-03 0.000000e+00
##   女_50-54 1.903052e-02 5.987227e-03
##   女_55-59 2.315978e-02 7.184673e-03
##   女_60-64 3.500898e-02 1.051091e-02
##   女_65-69 2.962298e-02 1.476849e-02
##   女_70-74 3.608618e-02 2.621075e-02
##   女_75-79 3.931777e-02 4.643427e-02
##   女_80-84 3.375224e-02 6.891964e-02
##   女_85-89 2.692998e-02 8.116019e-02
##   女_90+   2.280072e-02 8.448643e-02
##   男_0     0.000000e+00 1.330495e-04
##   男_1-4   0.000000e+00 1.330495e-04
##   男_10-14 0.000000e+00 2.660990e-04
##   男_15-19 0.000000e+00 0.000000e+00
##   男_20-24 0.000000e+00 1.330495e-04
##   男_25-29 2.692998e-03 9.313465e-04
##   男_30-34 2.028725e-02 1.330495e-03
##   男_35-39 4.308797e-02 6.652475e-03
##   男_40-44 6.481149e-02 9.845663e-03
##   男_45-49 9.389587e-02 1.756253e-02
##   男_5-9   0.000000e+00 0.000000e+00
##   男_50-54 9.605027e-02 3.565726e-02
##   男_55-59 8.922801e-02 4.816392e-02
##   男_60-64 6.014363e-02 6.093667e-02
##   男_65-69 4.003591e-02 6.359766e-02
##   男_70-74 3.357271e-02 8.674827e-02
##   男_75-79 3.662478e-02 9.326770e-02
##   男_80-84 3.177738e-02 9.925492e-02
##   男_85-89 1.813285e-02 8.515168e-02
##   男_90+   8.438061e-03 3.978180e-02
library(ca)
fit <- ca(mytable)
print(fit) # basic results 
## 
##  Principal inertias (eigenvalues):
##            1        2        3        4        5        6        7       
## Value      0.123221 0.094676 0.031679 0.011286 0.003661 0.002747 0.000473
## Percentage 45.96%   35.31%   11.82%   4.21%    1.37%    1.02%    0.18%   
##            8        9    
## Value      0.000268 1e-04
## Percentage 0.1%     0.04%
## 
## 
##  Rows:
##              女_0    女_1-4  女_10-14  女_15-19  女_20-24  女_25-29
## Mass     0.000396  0.000380  0.000340  0.000784  0.000800  0.001045
## ChiDist  2.504946  2.040735  1.409708  3.332185  2.301867  1.553946
## Inertia  0.002484  0.001583  0.000677  0.008703  0.004237  0.002524
## Dim. 1  -3.289476 -3.211897 -2.611178 -5.493784 -3.816755 -2.688154
## Dim. 2   2.258891  0.924272  0.366967  1.446763  0.663577  0.146916
##          女_30-34  女_35-39  女_40-44  女_45-49    女_5-9  女_50-54
## Mass     0.002082  0.003507  0.005503  0.009517  0.000261  0.015423
## ChiDist  1.020190  0.723786  0.721094  0.718269  1.575338  0.693888
## Inertia  0.002167  0.001837  0.002861  0.004910  0.000648  0.007426
## Dim. 1  -2.256676 -1.784596 -1.649861 -1.628539 -3.629794 -1.489358
## Dim. 2  -0.249601 -0.558622 -1.089443 -1.030588 -0.452935 -1.128415
##          女_55-59  女_60-64  女_65-69  女_70-74  女_75-79 女_80-84
## Mass     0.021511  0.026769  0.025929  0.039254  0.055018 0.066078
## ChiDist  0.623279  0.453840  0.318418  0.229285  0.139465 0.253098
## Inertia  0.008357  0.005514  0.002629  0.002064  0.001070 0.004233
## Dim. 1  -1.242479 -0.964462 -0.591298 -0.266964  0.226172 0.580965
## Dim. 2  -1.104255 -0.825777 -0.649742 -0.430157 -0.099947 0.301067
##         女_85-89   女_90+     男_0    男_1-4  男_10-14  男_15-19  男_20-24
## Mass    0.063450 0.053395 0.000523  0.000364  0.000554  0.002082  0.002565
## ChiDist 0.431349 0.667748 1.623205  0.908190  1.575975  2.948069  2.592709
## Inertia 0.011806 0.023808 0.001377  0.000300  0.001376  0.018097  0.017244
## Dim. 1  0.911793 1.041583 1.024314 -0.536373 -0.798522 -0.673776 -0.639992
## Dim. 2  0.864463 1.707669 4.692106  2.078709  4.409334  8.817604  7.730789
##          男_25-29  男_30-34  男_35-39  男_40-44  男_45-49    男_5-9
## Mass     0.002747  0.005875  0.010776  0.016816  0.027790  0.000396
## ChiDist  1.840312  1.272153  0.923583  0.756023  0.639210  1.779021
## Inertia  0.009304  0.009507  0.009192  0.009612  0.011355  0.001253
## Dim. 1  -0.756362 -1.481631 -1.480206 -1.665907 -1.623855 -1.121608
## Dim. 2   5.579168  3.693687  2.230065  1.193004  0.590918  4.839300
##          男_50-54  男_55-59  男_60-64  男_65-69  男_70-74  男_75-79
## Mass     0.039088  0.047037  0.055572  0.048042  0.061391  0.071628
## ChiDist  0.465202  0.401378  0.327797  0.281403  0.219608  0.195325
## Inertia  0.008459  0.007578  0.005971  0.003804  0.002961  0.002733
## Dim. 1  -1.268316 -1.097919 -0.757520 -0.483423 -0.135506  0.244038
## Dim. 2   0.130875 -0.116165 -0.260510 -0.415045 -0.385756 -0.459806
##          男_80-84  男_85-89    男_90+
## Mass     0.087336  0.080757  0.047219
## ChiDist  0.325783  0.478949  0.661439
## Inertia  0.009269  0.018525  0.020658
## Dim. 1   0.784307  1.232642  1.691900
## Dim. 2  -0.481470 -0.485582 -0.399698
## 
## 
##  Columns:
##         心臟疾病  事故傷害      肺炎   高血壓  惡性腫瘤        腎
## Mass    0.153596  0.072515  0.087566 0.036071  0.364950  0.031503
## ChiDist 0.234746  1.043904  0.531680 0.438420  0.377182  0.337467
## Inertia 0.008464  0.079022  0.024753 0.006933  0.051920  0.003588
## Dim. 1  0.525620 -0.239405  1.388717 1.103231 -0.843032  0.847455
## Dim. 2  0.208532  3.318775 -0.214588 0.185023 -0.633609 -0.121695
##         腦血管疾病 慢性下呼吸道    慢性肝   糖尿病
## Mass      0.094565     0.055627  0.044100 0.059507
## ChiDist   0.252391     0.657024  1.129905 0.345255
## Inertia   0.006024     0.024013  0.056301 0.007093
## Dim. 1    0.489725     1.591974 -2.509691 0.537811
## Dim. 2   -0.211844    -0.616906  0.619446 0.025676
summary(fit) # extended results 
## Warning in abbreviate(rnames.temp, 4): abbreviate 不適用於非 ASCII 字元
## Warning in abbreviate(cnames.temp, 4): abbreviate 不適用於非 ASCII 字元
## 
## Principal inertias (eigenvalues):
## 
##  dim    value      %   cum%   scree plot               
##  1      0.123221  46.0  46.0  ***********              
##  2      0.094676  35.3  81.3  *********                
##  3      0.031679  11.8  93.1  ***                      
##  4      0.011286   4.2  97.3  *                        
##  5      0.003661   1.4  98.7                           
##  6      0.002747   1.0  99.7                           
##  7      0.000473   0.2  99.9                           
##  8      0.000268   0.1 100.0                           
##  9      1e-04000   0.0 100.0                           
##         -------- -----                                 
##  Total: 0.268112 100.0                                 
## 
## 
## Rows:
##       name   mass  qlt  inr     k=1 cor ctr    k=2 cor ctr  
## 1  |  女_0 |    0  289    9 | -1155 212   4 |  695  77   2 |
## 2  | 女_14 |    0  325    6 | -1127 305   4 |  284  19   0 |
## 3  | 女_10 |    0  429    3 |  -917 423   2 |  113   6   0 |
## 4  | 女_15 |    1  353   32 | -1928 335  24 |  445  18   2 |
## 5  | 女_20 |    1  347   16 | -1340 339  12 |  204   8   0 |
## 6  | 女_25 |    1  370    9 |  -944 369   8 |   45   1   0 |
## 7  | 女_30 |    2  609    8 |  -792 603  11 |  -77   6   0 |
## 8  | 女_35 |    4  806    7 |  -626 749  11 | -172  56   1 |
## 9  | 女_40 |    6  861   11 |  -579 645  15 | -335 216   7 |
## 10 | 女_45 |   10  828   18 |  -572 633  25 | -317 195  10 |
## 11 | 女_59 |    0  662    2 | -1274 654   3 | -139   8   0 |
## 12 | 女_50 |   15  818   28 |  -523 568  34 | -347 250  20 |
## 13 | 女_55 |   22  787   31 |  -436 490  33 | -340 297  26 |
## 14 | 女_60 |   27  870   21 |  -339 556  25 | -254 313  18 |
## 15 | 女_65 |   26  819   10 |  -208 425   9 | -200 394  11 |
## 16 | 女_70 |   39  500    8 |   -94 167   3 | -132 333   7 |
## 17 | 女_75 |   55  373    4 |    79 324   3 |  -31  49   1 |
## 18 | 女_80 |   66  783   16 |   204 649  22 |   93 134   6 |
## 19 | 女_85 |   63  931   44 |   320 551  53 |  266 380  47 |
## 20 | 女_90 |   53  919   89 |   366 300  58 |  525 619 156 |
## 21 |  男_0 |    1  840    5 |   360  49   1 | 1444 791  12 |
## 22 | 男_14 |    0  539    1 |  -188  43   0 |  640 496   2 |
## 23 | 男_10 |    1  773    5 |  -280  32   0 | 1357 741  11 |
## 24 | 男_15 |    2  853   67 |  -237   6   1 | 2713 847 162 |
## 25 | 男_20 |    3  849   64 |  -225   8   1 | 2379 842 153 |
## 26 | 男_25 |    3  891   35 |  -266  21   2 | 1717 870  86 |
## 27 | 男_30 |    6  965   35 |  -520 167  13 | 1137 798  80 |
## 28 | 男_35 |   11  868   34 |  -520 317  24 |  686 552  54 |
## 29 | 男_40 |   17  834   36 |  -585 598  47 |  367 236  24 |
## 30 | 男_45 |   28  876   42 |  -570 795  73 |  182  81  10 |
## 31 | 男_59 |    0  750    5 |  -394  49   0 | 1489 701   9 |
## 32 | 男_50 |   39  923   32 |  -445 916  63 |   40   7   1 |
## 33 | 男_55 |   47  930   28 |  -385 922  57 |  -36   8   1 |
## 34 | 男_60 |   56  718   22 |  -266 658  32 |  -80  60   4 |
## 35 | 男_65 |   48  570   14 |  -170 364  11 | -128 206   8 |
## 36 | 男_70 |   61  339   11 |   -48  47   1 | -119 292   9 |
## 37 | 男_75 |   72  717   10 |    86 192   4 | -141 525  15 |
## 38 | 男_80 |   87  921   35 |   275 714  54 | -148 207  20 |
## 39 | 男_85 |   81  913   69 |   433 816 123 | -149  97  19 |
## 40 | 男_90 |   47  841   77 |   594 806 135 | -123  35   8 |
## 
## Columns:
##          name   mass  qlt  inr    k=1 cor ctr    k=2 cor ctr  
## 1  | 心臟疾病 |  154  692   32 |  185 618  42 |   64  75   7 |
## 2  | 事故傷害 |   73  963  295 |  -84   6   4 | 1021 957 799 |
## 3  |     肺炎 |   88  856   92 |  487 841 169 |  -66  15   4 |
## 4  |   高血壓 |   36  797   26 |  387 780  44 |   57  17   1 |
## 5  | 惡性腫瘤 |  365  883  194 | -296 616 259 | -195 267 147 |
## 6  |       腎 |   32  789   13 |  297 777  23 |  -37  12   0 |
## 7  | 腦血管疾 |   95  531   22 |  172 464  23 |  -65  67   4 |
## 8  | 慢性下呼 |   56  807   90 |  559 723 141 | -190  83  21 |
## 9  |   慢性肝 |   44  636  210 | -881 608 278 |  191  28  17 |
## 10 |   糖尿病 |   60  300   26 |  189 299  17 |    8   1   0 |
plot(fit) # symmetric map

##2 典型相關分析

#讀資料
dta <- read.table("PsyEdu.txt",head=T)
str(dta)
## 'data.frame':    600 obs. of  8 variables:
##  $ locus_of_control: num  -0.84 -0.38 0.89 0.71 -0.64 1.11 0.06 -0.91 0.45 0 ...
##  $ self_concept    : num  -0.24 -0.47 0.59 0.28 0.03 0.9 0.03 -0.59 0.03 0.03 ...
##  $ motivation      : num  1 0.67 0.67 0.67 1 0.33 0.67 0.67 1 0.67 ...
##  $ read            : num  54.8 62.7 60.6 62.7 41.6 62.7 41.6 44.2 62.7 62.7 ...
##  $ write           : num  64.5 43.7 56.7 56.7 46.3 64.5 39.1 39.1 51.5 64.5 ...
##  $ math            : num  44.5 44.7 70.5 54.7 38.4 61.4 56.3 46.3 54.4 38.3 ...
##  $ science         : num  52.6 52.6 58 58 36.3 58 45 36.3 49.8 55.8 ...
##  $ female          : int  1 1 0 0 1 1 0 0 1 1 ...
#一般的迴歸
summary(m1<-lm(read~locus_of_control+self_concept+motivation,data=dta))
## 
## Call:
## lm(formula = read ~ locus_of_control + self_concept + motivation, 
##     data = dta)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.6920  -6.8603  -0.4631   6.5138  24.3699 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       48.7383     0.8605  56.637  < 2e-16 ***
## locus_of_control   5.2241     0.5885   8.876  < 2e-16 ***
## self_concept      -0.5457     0.5662  -0.964 0.335498    
## motivation         4.0281     1.1844   3.401 0.000717 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.305 on 596 degrees of freedom
## Multiple R-squared:  0.1559, Adjusted R-squared:  0.1517 
## F-statistic:  36.7 on 3 and 596 DF,  p-value: < 2.2e-16
summary(m2<-lm(write~locus_of_control+self_concept+motivation,data=dta))
## 
## Call:
## lm(formula = write ~ locus_of_control + self_concept + motivation, 
##     data = dta)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -28.575  -6.388   1.222   7.073  19.442 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       48.1524     0.8234  58.482  < 2e-16 ***
## locus_of_control   4.7249     0.5631   8.391 3.51e-16 ***
## self_concept      -1.3028     0.5417  -2.405   0.0165 *  
## motivation         5.7241     1.1332   5.051 5.85e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.903 on 596 degrees of freedom
## Multiple R-squared:  0.1663, Adjusted R-squared:  0.1621 
## F-statistic: 39.63 on 3 and 596 DF,  p-value: < 2.2e-16
summary(m3<-lm(math~locus_of_control+self_concept+motivation,data=dta))
## 
## Call:
## lm(formula = math ~ locus_of_control + self_concept + motivation, 
##     data = dta)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.9608  -6.4511  -0.5789   6.0455  25.9800 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       49.0821     0.8149  60.232  < 2e-16 ***
## locus_of_control   4.3814     0.5573   7.862 1.78e-14 ***
## self_concept      -0.4951     0.5361  -0.923  0.35614    
## motivation         3.5506     1.1216   3.166  0.00163 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.812 on 596 degrees of freedom
## Multiple R-squared:  0.1284, Adjusted R-squared:  0.124 
## F-statistic: 29.27 on 3 and 596 DF,  p-value: < 2.2e-16
summary(m4<-lm(science~locus_of_control+self_concept+motivation,data=dta))
## 
## Call:
## lm(formula = science ~ locus_of_control + self_concept + motivation, 
##     data = dta)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.4977  -6.2059   0.2064   6.9990  22.3416 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      50.63040    0.85048  59.532  < 2e-16 ***
## locus_of_control  4.55637    0.58165   7.834 2.18e-14 ***
## self_concept      0.07265    0.55954   0.130    0.897    
## motivation        1.04827    1.17054   0.896    0.371    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.196 on 596 degrees of freedom
## Multiple R-squared:  0.1068, Adjusted R-squared:  0.1023 
## F-statistic: 23.75 on 3 and 596 DF,  p-value: 1.563e-14
p <- dta[, 1:3]
s <- dta[, 4:7]

#cor plot
require(ggplot2)
## Loading required package: ggplot2
require(GGally)
## Loading required package: GGally
ggpairs(p)

ggpairs(s)

# correlations
cor(p, s)
##                        read      write      math    science
## locus_of_control 0.37356505 0.35887684 0.3372690 0.32462694
## self_concept     0.06065584 0.01944856 0.0535977 0.06982633
## motivation       0.21060992 0.25424818 0.1950135 0.11566948
#can corr analysis
require(candisc)
## Loading required package: candisc
## Loading required package: car
## 
## Attaching package: 'car'
## The following object is masked from 'package:vcdExtra':
## 
##     Burt
## Loading required package: heplots
## 
## Attaching package: 'candisc'
## The following object is masked from 'package:stats':
## 
##     cancor
cc1 <- cancor(p, s, set.names=c("p", "s"))
cc1
## 
## Canonical correlation analysis of:
##   3   p  variables:  locus_of_control, self_concept, motivation 
##   with    4   s  variables:  read, write, math, science 
## 
##     CanR    CanRSQ     Eigen percent    cum                          scree
## 1 0.4464 0.1993055 0.2489158 91.0086  91.01 ******************************
## 2 0.1534 0.0235190 0.0240855  8.8061  99.81 ***                           
## 3 0.0225 0.0005064 0.0005067  0.1852 100.00                               
## 
## Test of H0: The canonical correlations in the 
## current row and all that follow are zero
## 
##      CanR LR test stat approx F numDF  denDF Pr(> F)    
## 1 0.44644      0.78147   12.774    12 1569.2 < 2e-16 ***
## 2 0.15336      0.97599    2.421     6 1188.0 0.02488 *  
## 3 0.02250      0.99949              2                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#standarized coefficients 典型相關分析係數
coef(cc1, type="both", standardize=TRUE)
## [[1]]
##                       Xcan1      Xcan2      Xcan3
## locus_of_control -0.8379311  0.5134098  0.3328964
## self_concept      0.1670182  0.5941199 -0.8502290
## motivation       -0.4281181 -0.9034217 -0.3747775
## 
## [[2]]
##               Ycan1       Ycan2      Ycan3
## read    -0.44500741 -0.01609314 -0.8924138
## write   -0.53581915 -0.87941356  0.9349929
## math    -0.18265622 -0.02782487 -0.8268251
## science  0.03686176  1.20559459  0.8589501
#redundancy
redundancy(cc1)
## 
## Redundancies for the p variables & total X canonical redundancy
## 
##     Xcan1     Xcan2     Xcan3 total X|Y 
## 0.0789593 0.0054866 0.0001876 0.0846336 
## 
## Redundancies for the s variables & total Y canonical redundancy
## 
##     Ycan1     Ycan2     Ycan3 total Y|X 
## 1.358e-01 3.533e-03 4.139e-05 1.394e-01
#plot
plot(cc1, smooth=TRUE)