This is analysis associated with the first RQ for the STEM-IE project.
This is more about what are the activities that are challenging and relevant in order to understand what program-level characteristics predict these experience.
library(tidyverse)
library(lmerTest)
library(lme4)
library(corrr)
library(jmRtools)
esm <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-esm.csv")
pre_survey_data_processed <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-pre-survey.csv")
post_survey_data_partially_processed <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-post-survey.csv")
video <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-video.csv")
pqa <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-pqa.csv")
attendance <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-attendance.csv")
class_data <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-class-video.csv")
demographics <- read_csv("/Volumes/SCHMIDTLAB/PSE/data/STEM-IE/STEM-IE-demographics.csv")
pm <- read_csv("/Volumes/SCHMIDTLAB/PSE/Data/STEM-IE/STEM-IE-program-match.csv")
attendance <- rename(attendance, participant_ID = ParticipantID)
attendance <- mutate(attendance, prop_attend = DaysAttended / DaysScheduled,
participant_ID = as.integer(participant_ID))
attendance <- select(attendance, participant_ID, prop_attend)
demographics <- filter(demographics, participant_ID!= 7187)
demographics <- left_join(demographics, attendance)
esm$overall_engagement <- jmRtools::composite_mean_maker(esm, hard_working, concentrating, enjoy, interest)
df <- left_join(esm, pre_survey_data_processed, by = "participant_ID") # df & post-survey
df <- left_join(df, video, by = c("program_ID", "response_date", "sociedad_class", "signal_number")) # df & video
df <- left_join(df, demographics, by = c("participant_ID", "program_ID")) # df and demographics
pqa <- mutate(pqa,
active = active_part_1 + active_part_2,
ho_thinking = ho_thinking_1 + ho_thinking_2 + ho_thinking_3,
belonging = belonging_1 + belonging_2,
agency = agency_1 + agency_2 + agency_3 + agency_4,
youth_development_overall = active_part_1 + active_part_2 + ho_thinking_1 + ho_thinking_2 + ho_thinking_3 + belonging_1 + belonging_2 + agency_1 + agency_2 + agency_3 + agency_4,
making_observations = stem_sb_8,
data_modeling = stem_sb_2 + stem_sb_3 + stem_sb_9,
interpreting_communicating = stem_sb_6,
generating_data = stem_sb_4,
asking_questions = stem_sb_1,
stem_sb = stem_sb_1 + stem_sb_2 + stem_sb_3 + stem_sb_4 + stem_sb_5 + stem_sb_6 + stem_sb_7 + stem_sb_8 + stem_sb_9)
# pqa <- rename(pqa, sixth_math_sociedad = sixth_math)
# pqa <- rename(pqa, seventh_math_sociedad = seventh_math)
# pqa <- rename(pqa, eighth_math_sociedad = eighth_math)
# pqa <- rename(pqa, dance_sociedad = dance)
# pqa <- rename(pqa, robotics_sociedad = robotics)
pqa$sociedad_class <- ifelse(pqa$eighth_math == 1, "8th Math",
ifelse(pqa$seventh_math == 1, "7th Math",
ifelse(pqa$sixth_math == 1, "6th Math",
ifelse(pqa$robotics == 1, "Robotics",
ifelse(pqa$dance == 1, "Dance", NA)))))
pqa <- rename(pqa,
program_ID = SiteIDNumeric,
response_date = resp_date,
signal_number = signal)
pqa$program_ID <- as.character(pqa$program_ID)
df <- left_join(df, pqa, by = c("response_date", "program_ID", "signal_number", "sociedad_class"))
## Warning: Column `program_ID` joining factor and character vector, coercing
## into character vector
df <- df %>%
mutate(youth_activity_three = case_when(
youth_activity_rc == "Creating Product" ~ "Creating Product",
youth_activity_rc == "Basic Skills Activity" ~ "Basic Skills Activity",
TRUE ~ "Other"
))
df$youth_activity_three <- fct_relevel(df$youth_activity_three,
"Other")
df %>%
select(challenge, relevance, learning, positive_affect, ho_thinking, stem_sb, agency, active, belonging) %>%
correlate() %>%
shave() %>%
fashion() %>%
knitr::kable()
rowname | challenge | relevance | learning | positive_affect | ho_thinking | stem_sb | agency | active | belonging |
---|---|---|---|---|---|---|---|---|---|
challenge | |||||||||
relevance | .39 | ||||||||
learning | .30 | .65 | |||||||
positive_affect | .27 | .52 | .48 | ||||||
ho_thinking | -.04 | .02 | .02 | .04 | |||||
stem_sb | .00 | .02 | .04 | -.04 | .54 | ||||
agency | .06 | .02 | .04 | .04 | .38 | .39 | |||
active | .01 | .02 | .03 | .00 | .44 | .56 | .16 | ||
belonging | .03 | -.02 | .03 | -.01 | .36 | .42 | .54 | .22 |
df <- df %>%
mutate(ho_thinking_dummy = ifelse(ho_thinking > 0, 1, 0),
agency_dummy = ifelse(agency > 0, 1, 0),
active_dummy = ifelse(active > 0, 1, 0),
belonging_dummy = ifelse(belonging > 0, 1, 0),
stem_sb_dummy = ifelse(stem_sb > 0, 1, 0))
m <- lmer(challenge ~
youth_activity_rc +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula:
## challenge ~ youth_activity_rc + (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 7536.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9280 -0.6391 -0.0127 0.5861 3.4603
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.47746 0.6910
## program_ID (Intercept) 0.04963 0.2228
## Residual 0.71677 0.8466
## Number of obs: 2818, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 2.18261 0.09445 9.30000
## youth_activity_rcBasic Skills Activity 0.11745 0.04694 2661.70000
## youth_activity_rcCreating Product 0.37841 0.04794 2667.70000
## youth_activity_rcField Trip Speaker -0.05545 0.08628 2630.80000
## youth_activity_rcLab Activity 0.20071 0.08506 2639.40000
## youth_activity_rcProgram Staff Led -0.08018 0.05331 2642.80000
## t value Pr(>|t|)
## (Intercept) 23.109 1.51e-09 ***
## youth_activity_rcBasic Skills Activity 2.502 0.0124 *
## youth_activity_rcCreating Product 7.894 4.22e-15 ***
## youth_activity_rcField Trip Speaker -0.643 0.5205
## youth_activity_rcLab Activity 2.360 0.0184 *
## youth_activity_rcProgram Staff Led -1.504 0.1327
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) y__BSA yt__CP y__FTS yt__LA
## yth_ctv_BSA -0.199
## yth_ctvt_CP -0.188 0.372
## yth_ctv_FTS -0.113 0.247 0.219
## yth_ctvt_LA -0.105 0.205 0.200 0.147
## yth_ctv_PSL -0.172 0.413 0.305 0.192 0.188
m <- lmer(challenge ~
active +
ho_thinking +
belonging +
agency +
stem_sb +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula:
## challenge ~ active + ho_thinking + belonging + agency + stem_sb +
## (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 7523.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9695 -0.6407 -0.0455 0.5642 3.3854
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.46915 0.6849
## program_ID (Intercept) 0.05772 0.2402
## Residual 0.72415 0.8510
## Number of obs: 2799, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.14895 0.10921 13.40000 19.677 2.70e-11 ***
## active 0.03689 0.03890 2628.20000 0.948 0.3430
## ho_thinking -0.08812 0.02020 2645.10000 -4.362 1.34e-05 ***
## belonging 0.05473 0.02771 2625.80000 1.975 0.0484 *
## agency 0.06509 0.01507 2637.70000 4.318 1.63e-05 ***
## stem_sb 0.01803 0.00951 2637.00000 1.896 0.0581 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) active h_thnk blngng agency
## active -0.353
## ho_thinking -0.089 -0.203
## belonging -0.068 -0.011 -0.104
## agency -0.117 0.129 -0.178 -0.427
## stem_sb 0.135 -0.446 -0.278 -0.164 -0.164
m <- lmer(challenge ~
active_dummy +
ho_thinking_dummy +
belonging_dummy +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: challenge ~ active_dummy + ho_thinking_dummy + belonging_dummy +
## agency_dummy + stem_sb_dummy + (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 7536.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9701 -0.6340 -0.0514 0.5998 3.3489
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.4656 0.6823
## program_ID (Intercept) 0.0561 0.2369
## Residual 0.7313 0.8552
## Number of obs: 2799, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 1.99178 0.16293 68.70000 12.225 < 2e-16 ***
## active_dummy 0.10255 0.13582 2611.90000 0.755 0.45028
## ho_thinking_dummy -0.13688 0.05551 2636.00000 -2.466 0.01374 *
## belonging_dummy 0.12393 0.04475 2628.70000 2.769 0.00566 **
## agency_dummy 0.11704 0.04976 2632.80000 2.352 0.01874 *
## stem_sb_dummy 0.13825 0.04976 2649.20000 2.778 0.00551 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) actv_d h_thn_ blngn_ agncy_
## active_dmmy -0.738
## h_thnkng_dm -0.105 -0.019
## blngng_dmmy -0.021 -0.112 -0.073
## agency_dmmy -0.078 -0.021 -0.231 -0.395
## stm_sb_dmmy 0.001 -0.198 -0.361 0.086 -0.025
m <- lmer(challenge ~
youth_activity_three +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula:
## challenge ~ youth_activity_three + agency_dummy + stem_sb_dummy +
## (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 7492
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8344 -0.6605 -0.0093 0.5873 3.4063
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.46893 0.6848
## program_ID (Intercept) 0.05392 0.2322
## Residual 0.71885 0.8479
## Number of obs: 2799, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 2.089e+00 1.055e-01 1.310e+01
## youth_activity_threeBasic Skills Activity 1.290e-01 4.258e-02 2.638e+03
## youth_activity_threeCreating Product 3.500e-01 4.664e-02 2.644e+03
## agency_dummy 7.530e-02 4.437e-02 2.638e+03
## stem_sb_dummy 4.182e-02 4.569e-02 2.647e+03
## t value Pr(>|t|)
## (Intercept) 19.805 3.65e-11 ***
## youth_activity_threeBasic Skills Activity 3.030 0.00247 **
## youth_activity_threeCreating Product 7.506 8.30e-14 ***
## agency_dummy 1.697 0.08975 .
## stem_sb_dummy 0.915 0.36014
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) y__BSA yt__CP agncy_
## yth_ctv_BSA -0.041
## yth_ctvt_CP 0.012 0.262
## agency_dmmy -0.290 -0.035 -0.215
## stm_sb_dmmy -0.300 -0.159 -0.140 -0.090
m <- lmer(relevance ~
youth_activity_rc +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula:
## relevance ~ youth_activity_rc + (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 6157.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9336 -0.5211 0.0259 0.5822 4.1256
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.48174 0.6941
## program_ID (Intercept) 0.01492 0.1221
## Residual 0.42481 0.6518
## Number of obs: 2818, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 2.461e+00 6.821e-02 9.100e+00
## youth_activity_rcBasic Skills Activity 1.543e-01 3.619e-02 2.648e+03
## youth_activity_rcCreating Product 2.304e-01 3.697e-02 2.654e+03
## youth_activity_rcField Trip Speaker 2.930e-01 6.645e-02 2.611e+03
## youth_activity_rcLab Activity 1.121e-01 6.552e-02 2.632e+03
## youth_activity_rcProgram Staff Led 1.593e-01 4.107e-02 2.637e+03
## t value Pr(>|t|)
## (Intercept) 36.074 3.89e-11 ***
## youth_activity_rcBasic Skills Activity 4.263 2.08e-05 ***
## youth_activity_rcCreating Product 6.231 5.38e-10 ***
## youth_activity_rcField Trip Speaker 4.409 1.08e-05 ***
## youth_activity_rcLab Activity 1.711 0.087174 .
## youth_activity_rcProgram Staff Led 3.878 0.000108 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) y__BSA yt__CP y__FTS yt__LA
## yth_ctv_BSA -0.213
## yth_ctvt_CP -0.200 0.371
## yth_ctv_FTS -0.123 0.247 0.218
## yth_ctvt_LA -0.114 0.205 0.200 0.147
## yth_ctv_PSL -0.184 0.413 0.305 0.193 0.188
m <- lmer(relevance ~
active +
ho_thinking +
belonging +
agency +
stem_sb +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula:
## relevance ~ active + ho_thinking + belonging + agency + stem_sb +
## (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 6166.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9173 -0.5208 0.0480 0.5775 3.7515
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.47435 0.6887
## program_ID (Intercept) 0.01325 0.1151
## Residual 0.43140 0.6568
## Number of obs: 2799, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.498e+00 7.558e-02 1.500e+01 33.047 1.78e-15 ***
## active 2.253e-02 3.005e-02 2.621e+03 0.750 0.4536
## ho_thinking 1.671e-02 1.561e-02 2.633e+03 1.070 0.2847
## belonging -4.222e-02 2.141e-02 2.618e+03 -1.972 0.0487 *
## agency 5.451e-03 1.165e-02 2.628e+03 0.468 0.6398
## stem_sb 1.623e-02 7.348e-03 2.626e+03 2.209 0.0273 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) active h_thnk blngng agency
## active -0.394
## ho_thinking -0.105 -0.203
## belonging -0.075 -0.011 -0.103
## agency -0.128 0.129 -0.178 -0.427
## stem_sb 0.152 -0.446 -0.278 -0.164 -0.164
m <- lmer(relevance ~
active_dummy +
ho_thinking_dummy +
belonging_dummy +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: relevance ~ active_dummy + ho_thinking_dummy + belonging_dummy +
## agency_dummy + stem_sb_dummy + (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 6152.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9406 -0.5201 0.0589 0.5742 3.7108
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.477246 0.69083
## program_ID (Intercept) 0.007793 0.08828
## Residual 0.430964 0.65648
## Number of obs: 2799, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.32765 0.11756 119.10000 19.800 < 2e-16 ***
## active_dummy 0.20301 0.10430 2609.70000 1.946 0.051703 .
## ho_thinking_dummy -0.07348 0.04264 2626.00000 -1.723 0.084995 .
## belonging_dummy 0.01109 0.03439 2621.40000 0.322 0.747104
## agency_dummy -0.01050 0.03825 2624.70000 -0.275 0.783602
## stem_sb_dummy 0.13831 0.03826 2632.40000 3.615 0.000305 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) actv_d h_thn_ blngn_ agncy_
## active_dmmy -0.785
## h_thnkng_dm -0.116 -0.019
## blngng_dmmy -0.021 -0.112 -0.072
## agency_dmmy -0.082 -0.021 -0.231 -0.395
## stm_sb_dmmy 0.003 -0.198 -0.360 0.084 -0.025
m <- lmer(relevance ~
youth_activity_three +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula:
## relevance ~ youth_activity_three + agency_dummy + stem_sb_dummy +
## (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 6138.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0038 -0.5183 0.0496 0.5838 3.8396
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.47631 0.69015
## program_ID (Intercept) 0.00697 0.08349
## Residual 0.42903 0.65501
## Number of obs: 2799, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 2.48924 0.06904 15.20000
## youth_activity_threeBasic Skills Activity 0.05678 0.03292 2627.20000
## youth_activity_threeCreating Product 0.15189 0.03606 2629.50000
## agency_dummy -0.04773 0.03432 2628.70000
## stem_sb_dummy 0.10530 0.03535 2632.70000
## t value Pr(>|t|)
## (Intercept) 36.057 4.44e-16 ***
## youth_activity_threeBasic Skills Activity 1.724 0.08475 .
## youth_activity_threeCreating Product 4.212 2.62e-05 ***
## agency_dummy -1.391 0.16440
## stem_sb_dummy 2.979 0.00292 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) y__BSA yt__CP agncy_
## yth_ctv_BSA -0.049
## yth_ctvt_CP 0.015 0.261
## agency_dmmy -0.342 -0.035 -0.214
## stm_sb_dmmy -0.354 -0.158 -0.139 -0.092
m <- lmer(learning ~
youth_activity_rc +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula:
## learning ~ youth_activity_rc + (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 7505
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2278 -0.5584 0.1291 0.5673 2.7111
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.400255 0.63266
## program_ID (Intercept) 0.003176 0.05635
## Residual 0.719333 0.84813
## Number of obs: 2817, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 2.682e+00 5.706e-02 1.090e+01
## youth_activity_rcBasic Skills Activity 2.225e-01 4.682e-02 2.626e+03
## youth_activity_rcCreating Product 1.349e-01 4.787e-02 2.668e+03
## youth_activity_rcField Trip Speaker 1.010e-01 8.578e-02 2.331e+03
## youth_activity_rcLab Activity 1.531e-01 8.482e-02 2.568e+03
## youth_activity_rcProgram Staff Led 7.762e-02 5.318e-02 2.609e+03
## t value Pr(>|t|)
## (Intercept) 46.998 6.37e-14 ***
## youth_activity_rcBasic Skills Activity 4.753 2.12e-06 ***
## youth_activity_rcCreating Product 2.818 0.00487 **
## youth_activity_rcField Trip Speaker 1.178 0.23899
## youth_activity_rcLab Activity 1.805 0.07125 .
## youth_activity_rcProgram Staff Led 1.460 0.14448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) y__BSA yt__CP y__FTS yt__LA
## yth_ctv_BSA -0.330
## yth_ctvt_CP -0.310 0.372
## yth_ctv_FTS -0.192 0.245 0.218
## yth_ctvt_LA -0.180 0.206 0.201 0.145
## yth_ctv_PSL -0.286 0.410 0.308 0.192 0.188
m <- lmer(learning ~
active +
ho_thinking +
belonging +
agency +
stem_sb +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: learning ~ active + ho_thinking + belonging + agency + stem_sb +
## (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 7473.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3078 -0.5717 0.1097 0.5989 2.7246
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.3971368 0.63019
## program_ID (Intercept) 0.0001029 0.01014
## Residual 0.7216654 0.84951
## Number of obs: 2798, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.626e+00 7.073e-02 3.610e+01 37.133 <2e-16 ***
## active 8.049e-02 3.876e-02 2.640e+03 2.077 0.0379 *
## ho_thinking -2.430e-02 2.005e-02 2.617e+03 -1.212 0.2256
## belonging 3.292e-02 2.762e-02 2.640e+03 1.192 0.2334
## agency 1.130e-02 1.500e-02 2.647e+03 0.753 0.4515
## stem_sb 7.061e-03 9.456e-03 2.623e+03 0.747 0.4553
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) active h_thnk blngng agency
## active -0.543
## ho_thinking -0.147 -0.204
## belonging -0.105 -0.009 -0.103
## agency -0.172 0.127 -0.177 -0.427
## stem_sb 0.211 -0.445 -0.279 -0.166 -0.165
m <- lmer(learning ~
active_dummy +
ho_thinking_dummy +
belonging_dummy +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: learning ~ active_dummy + ho_thinking_dummy + belonging_dummy +
## agency_dummy + stem_sb_dummy + (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 7454.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2559 -0.5710 0.1084 0.6080 2.6291
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.3977 0.6306
## program_ID (Intercept) 0.0000 0.0000
## Residual 0.7194 0.8482
## Number of obs: 2798, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.33939 0.13963 2676.00000 16.755 < 2e-16 ***
## active_dummy 0.32925 0.13447 2634.90000 2.448 0.01441 *
## ho_thinking_dummy -0.08456 0.05469 2714.10000 -1.546 0.12218
## belonging_dummy 0.08307 0.04428 2655.80000 1.876 0.06077 .
## agency_dummy 0.01726 0.04926 2655.80000 0.350 0.72608
## stem_sb_dummy 0.13065 0.04915 2688.10000 2.658 0.00791 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) actv_d h_thn_ blngn_ agncy_
## active_dmmy -0.853
## h_thnkng_dm -0.126 -0.021
## blngng_dmmy -0.023 -0.112 -0.070
## agency_dmmy -0.088 -0.021 -0.230 -0.397
## stm_sb_dmmy 0.003 -0.196 -0.358 0.083 -0.025
m <- lmer(learning ~
youth_activity_three +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: learning ~ youth_activity_three + agency_dummy + stem_sb_dummy +
## (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 7451.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.3015 -0.5708 0.1299 0.5844 2.7062
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.39773 0.63066
## program_ID (Intercept) 0.00119 0.03449
## Residual 0.71875 0.84779
## Number of obs: 2798, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 2.623e+00 6.895e-02 2.820e+01
## youth_activity_threeBasic Skills Activity 1.551e-01 4.244e-02 2.631e+03
## youth_activity_threeCreating Product 6.126e-02 4.643e-02 2.610e+03
## agency_dummy 3.645e-02 4.426e-02 2.649e+03
## stem_sb_dummy 9.638e-02 4.553e-02 2.634e+03
## t value Pr(>|t|)
## (Intercept) 38.040 < 2e-16 ***
## youth_activity_threeBasic Skills Activity 3.655 0.000262 ***
## youth_activity_threeCreating Product 1.319 0.187153
## agency_dummy 0.824 0.410259
## stem_sb_dummy 2.117 0.034377 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) y__BSA yt__CP agncy_
## yth_ctv_BSA -0.065
## yth_ctvt_CP 0.020 0.262
## agency_dmmy -0.442 -0.034 -0.215
## stm_sb_dmmy -0.458 -0.157 -0.138 -0.091
m <- lmer(positive_affect ~
youth_activity_rc +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: positive_affect ~ youth_activity_rc + (1 | program_ID) + (1 |
## participant_ID)
## Data: df
##
## REML criterion at convergence: 6956.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5513 -0.4396 0.0712 0.5666 3.5332
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.4917 0.7012
## program_ID (Intercept) 0.1106 0.3326
## Residual 0.5729 0.7569
## Number of obs: 2818, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 2.704e+00 1.250e-01 8.000e+00
## youth_activity_rcBasic Skills Activity 2.750e-02 4.204e-02 2.653e+03
## youth_activity_rcCreating Product -4.754e-03 4.294e-02 2.657e+03
## youth_activity_rcField Trip Speaker -2.771e-03 7.732e-02 2.639e+03
## youth_activity_rcLab Activity 6.033e-02 7.616e-02 2.635e+03
## youth_activity_rcProgram Staff Led -4.359e-02 4.774e-02 2.638e+03
## t value Pr(>|t|)
## (Intercept) 21.624 2.12e-08 ***
## youth_activity_rcBasic Skills Activity 0.654 0.513
## youth_activity_rcCreating Product -0.111 0.912
## youth_activity_rcField Trip Speaker -0.036 0.971
## youth_activity_rcLab Activity 0.792 0.428
## youth_activity_rcProgram Staff Led -0.913 0.361
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) y__BSA yt__CP y__FTS yt__LA
## yth_ctv_BSA -0.134
## yth_ctvt_CP -0.127 0.371
## yth_ctv_FTS -0.076 0.248 0.219
## yth_ctvt_LA -0.070 0.205 0.200 0.148
## yth_ctv_PSL -0.116 0.414 0.305 0.193 0.188
m <- lmer(positive_affect ~
active +
ho_thinking +
belonging +
agency +
stem_sb +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: positive_affect ~ active + ho_thinking + belonging + agency +
## stem_sb + (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 6887.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6013 -0.4594 0.0596 0.5555 3.6046
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.4913 0.7009
## program_ID (Intercept) 0.1082 0.3289
## Residual 0.5652 0.7518
## Number of obs: 2799, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.644e+00 1.305e-01 9.900e+00 20.271 2.23e-09 ***
## active 4.583e-02 3.440e-02 2.621e+03 1.332 0.1829
## ho_thinking -3.913e-03 1.789e-02 2.636e+03 -0.219 0.8269
## belonging 3.259e-02 2.450e-02 2.619e+03 1.330 0.1836
## agency 1.466e-02 1.334e-02 2.628e+03 1.100 0.2716
## stem_sb -1.851e-02 8.414e-03 2.628e+03 -2.200 0.0279 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) active h_thnk blngng agency
## active -0.261
## ho_thinking -0.065 -0.203
## belonging -0.050 -0.011 -0.104
## agency -0.087 0.129 -0.178 -0.427
## stem_sb 0.100 -0.446 -0.278 -0.164 -0.164
m <- lmer(positive_affect ~
active_dummy +
ho_thinking +
belonging_dummy +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: positive_affect ~ active_dummy + ho_thinking + belonging_dummy +
## agency_dummy + stem_sb_dummy + (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 6873.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6249 -0.4630 0.0470 0.5445 3.5490
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.4895 0.6997
## program_ID (Intercept) 0.1111 0.3333
## Residual 0.5642 0.7511
## Number of obs: 2799, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.62703 0.16892 26.60000 15.552 7.11e-15 ***
## active_dummy 0.01279 0.11945 2607.40000 0.107 0.91477
## ho_thinking -0.01351 0.01717 2647.40000 -0.787 0.43148
## belonging_dummy 0.04254 0.04046 2619.00000 1.052 0.29311
## agency_dummy 0.11316 0.04312 2620.90000 2.624 0.00873 **
## stem_sb_dummy -0.03801 0.04507 2642.00000 -0.843 0.39909
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) actv_d h_thnk blngn_ agncy_
## active_dmmy -0.627
## ho_thinking 0.007 -0.040
## blngng_dmmy -0.025 -0.101 -0.243
## agency_dmmy -0.089 -0.019 -0.158 -0.367
## stm_sb_dmmy -0.033 -0.182 -0.423 0.159 -0.040
m <- lmer(positive_affect ~
youth_activity_three +
agency_dummy +
stem_sb_dummy +
(1|program_ID) + (1|participant_ID),
data = df)
summary(m)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula:
## positive_affect ~ youth_activity_three + agency_dummy + stem_sb_dummy +
## (1 | program_ID) + (1 | participant_ID)
## Data: df
##
## REML criterion at convergence: 6868.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6357 -0.4582 0.0463 0.5428 3.5313
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant_ID (Intercept) 0.4902 0.7001
## program_ID (Intercept) 0.1132 0.3365
## Residual 0.5637 0.7508
## Number of obs: 2799, groups: participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error df
## (Intercept) 2.64465 0.13150 9.50000
## youth_activity_threeBasic Skills Activity 0.03046 0.03776 2629.20000
## youth_activity_threeCreating Product -0.04329 0.04138 2634.60000
## agency_dummy 0.13410 0.03934 2629.20000
## stem_sb_dummy -0.05356 0.04053 2636.50000
## t value Pr(>|t|)
## (Intercept) 20.111 3.99e-09 ***
## youth_activity_threeBasic Skills Activity 0.807 0.419894
## youth_activity_threeCreating Product -1.046 0.295570
## agency_dummy 3.409 0.000662 ***
## stem_sb_dummy -1.322 0.186425
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) y__BSA yt__CP agncy_
## yth_ctv_BSA -0.029
## yth_ctvt_CP 0.008 0.262
## agency_dmmy -0.206 -0.035 -0.214
## stm_sb_dmmy -0.214 -0.159 -0.141 -0.091