用户特征数据共230281条。其中被合约匹配到7689768条,实际分配流量条数为5853321条,其中1836447条未分配流量,占比1/5。(真实特征流量或点击率为0)
预估合约准确率计算公式: \[ \frac{|Y_t - Y_e|}{Y_t}=1-\frac{|Y_t-\frac{S_t}{P_c}*\hat P_c|}{Y_t} \]
注:\[Y_t为合约真实流量,Y_e为合约预估流量,S_t为合约真实匹配到总流量,P_c为合约真实流量求得的满足率,\hat P_c为预估流量求得的满足率\]
## geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.
contractdata<-contractdata[order(contractdata[,2]),] #按照服务率排序
contractCoin<-contractdata[contractdata$coincidenceRate<0.01,]
qplot(1:90,coincidenceRate,data=contractCoin)+geom_smooth()
## geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.
contractdata<-contractdata[order(contractdata[,4]),] #按照服务率排序
datam<-cbind(cl=1,MatchContractNum=contractdata$MatchContractNum,x=1:n)
datap<-cbind(cl=3,MatchContractNum=contractdata$allnum,x=1:n)
datao<-rbind(datam,datap)
datao<-data.frame(MatchContractNum=datao[,2],cl=datao[,1],x=datao[,3])
qplot(x,MatchContractNum,data=datao,colour=cl)