library(robustHD)
Loading required package: ggplot2
Loading required package: perry
Loading required package: parallel
Loading required package: robustbase
Warning messages:
1: R graphics engine version 12 is not supported by this version of RStudio. The Plots tab will be disabled until a newer version of RStudio is installed. 
2: In as.POSIXlt.POSIXct(x, tz) :
  unknown timezone 'zone/tz/2017c.1.0/zoneinfo/Europe/Helsinki'
library(readxl)

P/Net Sales

Beroende variabel: P/Net Sales
Oberoende Variabel: Ledare(1)

Deskriptiv statistik för P/Net Sales

Psales <- read_excel("~/Desktop/dataforr.xlsx")
summary(Psales$`P/Net Sales`)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
  0.0098   0.5292   1.4505   3.8803   2.9703 361.3567 




Parametriskt test: T-test av P/Net Sales




Parametriskt test: Winsoriserat(5%) t-test av ‘P/Net Sales’

t.test(winsorize(Psales$`P/Net sales`) ~Psales$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  winsorize(Psales$`P/Net sales`) by Psales$Leader
t = 0.48236, df = 9.3824, p-value = 0.6406
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.5379892  0.8319103
sample estimates:
mean in group 0 mean in group 1 
       1.667122        1.520162 
boxplot(winsorize(Psales$`P/Net sales`)~Psales$Leader)




Icke-parametriskt test: Mann-Whitney U-test

wilcox.test(Psales$`P/Net Sales`~Psales$Leader, mu=0, alt="two.sided", conf.int=T, conf.level=0.95, paired=F, exact=T,correct=T)

    Wilcoxon rank sum test

data:  Psales$`P/Net Sales` by Psales$Leader
W = 8528, p-value = 0.00741
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
 0.1133459 0.8774902
sample estimates:
difference in location 
             0.4418465 

P/EBITDA

Beroende variabel: P/EBITDA
Oberoende Variabel: Ledare(1)


Deskriptiv statistik för P/EBITDA

Pebitda <- read_excel("~/Documents/analysis/pebitda.xlsx")
summary(Psales$`P/EBITDA`)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
 0.006476  0.564578  1.154221  2.278268  2.244829 30.433192 




Parametriskt test: T-test av P/EBITDA

#t-test
t.test(Psales$`P/EBITDA` ~Psales$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  Psales$`P/EBITDA` by Psales$Leader
t = 2.7283, df = 131.03, p-value = 0.007241
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.2704579 1.6971349
sample estimates:
mean in group 0 mean in group 1 
       2.424347        1.440550 
boxplot(Psales$`P/EBITDA` ~Psales$Leader)




Parametriskt test: Winsoriserat(5%) t-test av ‘P/Net Sales’

t.test(winsorize(Psales$`P/EBITDA`) ~Psales$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  winsorize(Psales$`P/EBITDA`) by Psales$Leader
t = 2.6033, df = 69.923, p-value = 0.01127
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 0.09484341 0.71625675
sample estimates:
mean in group 0 mean in group 1 
       1.513509        1.107959 
boxplot(winsorize(Psales$`P/EBITDA`) ~Psales$Leader)




Icke-parametriskt test: Mann-Whitney U-test

wilcox.test(Psales$`P/EBITDA`~Psales$Leader, mu=0, alt="greater", conf.int=T, conf.level=0.95, paired=F, exact=T,correct=T)

    Wilcoxon rank sum test

data:  Psales$`P/EBITDA` by Psales$Leader
W = 8421, p-value = 0.006192
alternative hypothesis: true location shift is greater than 0
95 percent confidence interval:
 0.1113046       Inf
sample estimates:
difference in location 
             0.3546282 

P/EPS

Beroende variabel: P/EPS
Oberoende Variabel: Ledare(1)




Deskriptiv statistik:

Peps <- read_excel("~/Documents/analysis/peps.xlsx")
summary(Psales$`P/EPS`)
      Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
-235.59292    0.15600    0.95901   -0.03665    2.23245   99.47433 




Parametriskt test: T-test av P/EPS

t.test(Psales$`P/EPS` ~Psales$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  Psales$`P/EPS` by Psales$Leader
t = -0.53759, df = 324.45, p-value = 0.5912
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.572237  2.038921
sample estimates:
mean in group 0 mean in group 1 
     -0.1504864       0.6161719 
boxplot(Psales$`P/EPS` ~Psales$Leader)




Parametriskt test: Winsoriserat(5%) t-test av ‘P/EPS’

t.test(winsorize(Psales$`P/EPS`) ~Psales$Leader, mu=0, alt="two.sided")

    Welch Two Sample t-test

data:  winsorize(Psales$`P/EPS`) by Psales$Leader
t = 1.3229, df = 71.11, p-value = 0.1901
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.1567133  0.7746386
sample estimates:
mean in group 0 mean in group 1 
      1.1625727       0.8536101 
boxplot(winsorize(Psales$`P/EPS`) ~Psales$Leader)




Icke-parametriskt test: Mann-Whitney U-test

wilcox.test(Psales$`P/EPS`~Psales$Leader, mu=0, alt="two.sided", conf.int=T, conf.level=0.95, paired=F, exact=T,correct=T)

    Wilcoxon rank sum test

data:  Psales$`P/EPS` by Psales$Leader
W = 7763, p-value = 0.1547
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
 -0.1222284  0.8006830
sample estimates:
difference in location 
             0.3141649 
LS0tCnRpdGxlOiAiQXBwZW5kaXgiCm91dHB1dDoKICBodG1sX25vdGVib29rOiBkZWZhdWx0CiAgaHRtbF9kb2N1bWVudDogZGVmYXVsdAogIHBkZl9kb2N1bWVudDogZGVmYXVsdAotLS0KCgpgYGB7cn0KCmxpYnJhcnkocm9idXN0SEQpCmxpYnJhcnkocmVhZHhsKQoKYGBgCgojIyBQL05ldCBTYWxlcwoKQmVyb2VuZGUgdmFyaWFiZWw6IFAvTmV0IFNhbGVzCjxicj5PYmVyb2VuZGUgVmFyaWFiZWw6IExlZGFyZSgxKQo8YnI+PGJyPgoqKkRlc2tyaXB0aXYgc3RhdGlzdGlrIGbDtnIgUC9OZXQgU2FsZXMqKgoKYGBge3J9ClBzYWxlcyA8LSByZWFkX2V4Y2VsKCJ+L0Rlc2t0b3AvZGF0YWZvcnIueGxzeCIpCnN1bW1hcnkoUHNhbGVzJGBQL05ldCBTYWxlc2ApCmBgYAoKCgoKPGJyPjxicj48YnI+CioqUGFyYW1ldHJpc2t0IHRlc3Q6IFQtdGVzdCBhdiBQL05ldCBTYWxlcyoqCmBgYHtyfQojSDA6IFAvTmV0IFNhbGVzIGFyIGxpa2EgZm9yIGxlZGFyZSBvY2ggZm9samFyZQoKI3QtdGVzdAp0LnRlc3QoUHNhbGVzJGBQL05ldCBTYWxlc2AgfiBQc2FsZXMkTGVhZGVyLCBtdT0wLCBhbHQ9InR3by5zaWRlZCIpCmJveHBsb3QoUHNhbGVzJGBQL05ldCBTYWxlc2AgfiBQc2FsZXMkTGVhZGVyKQoKCmBgYAo8YnI+PGJyPjxicj4KKipQYXJhbWV0cmlza3QgdGVzdDogV2luc29yaXNlcmF0KDUlKSB0LXRlc3QgYXYgJ1AvTmV0IFNhbGVzJyoqCmBgYHtyfQp0LnRlc3Qod2luc29yaXplKFBzYWxlcyRgUC9OZXQgU2FsZXNgKSB+UHNhbGVzJExlYWRlciwgbXU9MCwgYWx0PSJ0d28uc2lkZWQiKQpib3hwbG90KHdpbnNvcml6ZShQc2FsZXMkYFAvTmV0IFNhbGVzYCl+UHNhbGVzJExlYWRlcikKCmBgYAo8YnI+PGJyPjxicj4KKipJY2tlLXBhcmFtZXRyaXNrdCB0ZXN0OiBNYW5uLVdoaXRuZXkgVS10ZXN0KioKCmBgYHtyfQp3aWxjb3gudGVzdChQc2FsZXMkYFAvTmV0IFNhbGVzYH5Qc2FsZXMkTGVhZGVyLCBtdT0wLCBhbHQ9ImdyZWF0ZXIiLCBjb25mLmludD1ULCBjb25mLmxldmVsPTAuOTUsIHBhaXJlZD1GLCBleGFjdD1ULGNvcnJlY3Q9VCkKCmBgYAoKIyNQL0VCSVREQQpCZXJvZW5kZSB2YXJpYWJlbDogUC9FQklUREEKPGJyPgpPYmVyb2VuZGUgVmFyaWFiZWw6IExlZGFyZSgxKQoKPGJyPgoqKkRlc2tyaXB0aXYgc3RhdGlzdGlrIGbDtnIgUC9FQklUREEqKgpgYGAKUGViaXRkYSA8LSByZWFkX2V4Y2VsKCJ+L0RvY3VtZW50cy9hbmFseXNpcy9wZWJpdGRhLnhsc3giKQpgYGAKYGBge3J9CnN1bW1hcnkoUHNhbGVzJGBQL0VCSVREQWApCmBgYAoKPGJyPjxicj48YnI+CgoqKlBhcmFtZXRyaXNrdCB0ZXN0OiBULXRlc3QgYXYgUC9FQklUREEqKgoKYGBge3J9CiN0LXRlc3QKdC50ZXN0KFBzYWxlcyRgUC9FQklUREFgIH5Qc2FsZXMkTGVhZGVyLCBtdT0wLCBhbHQ9InR3by5zaWRlZCIpCmJveHBsb3QoUHNhbGVzJGBQL0VCSVREQWAgflBzYWxlcyRMZWFkZXIpCmBgYAoKCjxicj48YnI+PGJyPgoqKlBhcmFtZXRyaXNrdCB0ZXN0OiBXaW5zb3Jpc2VyYXQoNSUpIHQtdGVzdCBhdiAnUC9OZXQgU2FsZXMnKioKCgpgYGB7cn0KdC50ZXN0KHdpbnNvcml6ZShQc2FsZXMkYFAvRUJJVERBYCkgflBzYWxlcyRMZWFkZXIsIG11PTAsIGFsdD0idHdvLnNpZGVkIikKYm94cGxvdCh3aW5zb3JpemUoUHNhbGVzJGBQL0VCSVREQWApIH5Qc2FsZXMkTGVhZGVyKQpgYGAKCjxicj48YnI+PGJyPgoqKklja2UtcGFyYW1ldHJpc2t0IHRlc3Q6IE1hbm4tV2hpdG5leSBVLXRlc3QqKgpgYGB7cn0Kd2lsY294LnRlc3QoUHNhbGVzJGBQL0VCSVREQWB+UHNhbGVzJExlYWRlciwgbXU9MCwgYWx0PSJncmVhdGVyIiwgY29uZi5pbnQ9VCwgY29uZi5sZXZlbD0wLjk1LCBwYWlyZWQ9RiwgZXhhY3Q9VCxjb3JyZWN0PVQpCgoKYGBgCiMjUC9FUFMKQmVyb2VuZGUgdmFyaWFiZWw6IFAvRVBTPGJyPgpPYmVyb2VuZGUgVmFyaWFiZWw6IExlZGFyZSgxKQoKPGJyPjxicj48YnI+CioqRGVza3JpcHRpdiBzdGF0aXN0aWs6KioKYGBgClBlcHMgPC0gcmVhZF9leGNlbCgifi9Eb2N1bWVudHMvYW5hbHlzaXMvcGVwcy54bHN4IikKCmBgYAoKYGBge3J9CnN1bW1hcnkoUHNhbGVzJGBQL0VQU2ApCmBgYAoKCjxicj48YnI+PGJyPgoqKlBhcmFtZXRyaXNrdCB0ZXN0OiBULXRlc3QgYXYgUC9FUFMqKgoKYGBge3J9CnQudGVzdChQc2FsZXMkYFAvRVBTYCB+UHNhbGVzJExlYWRlciwgbXU9MCwgYWx0PSJ0d28uc2lkZWQiKQpib3hwbG90KFBzYWxlcyRgUC9FUFNgIH5Qc2FsZXMkTGVhZGVyKQpgYGAKCjxicj48YnI+PGJyPgoqKlBhcmFtZXRyaXNrdCB0ZXN0OiBXaW5zb3Jpc2VyYXQoNSUpIHQtdGVzdCBhdiAnUC9FUFMnKioKYGBge3J9CnQudGVzdCh3aW5zb3JpemUoUHNhbGVzJGBQL0VQU2ApIH5Qc2FsZXMkTGVhZGVyLCBtdT0wLCBhbHQ9InR3by5zaWRlZCIpCmJveHBsb3Qod2luc29yaXplKFBzYWxlcyRgUC9FUFNgKSB+UHNhbGVzJExlYWRlcikKYGBgCgo8YnI+PGJyPjxicj4KKipJY2tlLXBhcmFtZXRyaXNrdCB0ZXN0OiBNYW5uLVdoaXRuZXkgVS10ZXN0KioKCmBgYHtyfQp3aWxjb3gudGVzdChQc2FsZXMkYFAvRVBTYH5Qc2FsZXMkTGVhZGVyLCBtdT0wLCBhbHQ9InR3by5zaWRlZCIsIGNvbmYuaW50PVQsIGNvbmYubGV2ZWw9MC45NSwgcGFpcmVkPUYsIGV4YWN0PVQsY29ycmVjdD1UKQoKYGBgCgoKCg==