store.df <-read.csv(paste ("Store24.csv", sep=""))
View(store.df)

TASK 4d

Three very important variables in this analysis are the store Profit, the management tenure (MTenure) and the crew tenure (CTenure).

Use R to measure the mean and standard deviation of Profit.

mean(store.df$Profit)
## [1] 276313.6

This is the required mean.

sd(store.df$Profit)
## [1] 89404.08

This is the required standard deviation.

Use R to measure the mean and standard deviation of MTenure.

mean(store.df$MTenure)
## [1] 45.29644

This is the required mean.

sd(store.df$MTenure)
## [1] 57.67155

This is the required standard deviation.

Use R to measure the mean and standard deviation of CTenure.

mean(store.df$CTenure)
## [1] 13.9315

This is the required mean.

sd(store.df$CTenure)
## [1] 17.69752

This is the required standard deviation.

TASK 4e - Sorting and Subsetting data in R

In this TASK, we will learn how to sort a dataframe based on a data column Understand what the following R code does. Copy-Paste it and Execute it in R.

attach(mtcars)
View(mtcars)
newdata <- mtcars[order(mpg),] # sort by mpg (ascending)
View(newdata)

R has an inbuilt dataset called mtcars. In the above code, the order() function helps us sort the data in mtcars, based on a data column called mpg. We can sort in ascending order or descending order. After sorting, notice how we can view the top 5 cars that have the highest and lowest mpg respectively.

newdata[1:5,] # see the first 5 rows
##                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
## Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
## Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
newdata <- mtcars[order(-mpg),] # sort by mpg (descending)
View(newdata)
detach(mtcars)

TASK 4f- Replicate Exhibit 1 shown in the case, using R

Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 most profitable stores.

attach(store.df)
max_prof<-store.df[order(-Profit),]
max_prof[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550

Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the bottom 10 least profitable stores.

min_prof<-store.df[order(Profit),]
min_prof[1:10,1:5]
##    store   Sales Profit     MTenure   CTenure
## 57    57  699306 122180  24.3485700  2.956879
## 66    66  879581 146058 115.2039000  3.876797
## 41    41  744211 147327  14.9180200 11.926080
## 55    55  925744 147672   6.6703910 18.365500
## 32    32  828918 149033  36.0792600  6.636550
## 13    13  857843 152513   0.6571813  1.577002
## 54    54  811190 159792   6.6703910  3.876797
## 52    52 1073008 169201  24.1185600  3.416838
## 61    61  716589 177046  21.8184200 13.305950
## 37    37 1202917 187765  23.1985000  1.347023

TASK 4g - Scatter Plots

Use R to draw a scatter plot of Profit vs. MTenure.

library(car)
scatterplot(Profit ~ MTenure , data=store.df, 
    xlab="Mtenure", ylab="Profit", 
   main="Scatterplot of Profit Vs Mtenure", )

TASK 4h - Scatter Plots (contd.)

Use R to draw a scatter plot of Profit vs. CTenure.

scatterplot(Profit ~ CTenure , data=store.df, 
    xlab="Ctenure", ylab="Profit", 
   main="Scatterplot of Profit Vs Ctenure", )

TASK 4i - Correlation Matrix

Use R to construct a Correlation Matrix for all the variables in the dataset. (Display the numbers up to 2 Decimal places)

round(cor(store.df),2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

TASK 4j - Correlations

Use R to measure the correlation between Profit and MTenure. (Display the numbers up to 2 Decimal places)

round(cor(store.df$Profit,store.df$MTenure),2)
## [1] 0.44

Use R to measure the correlation between Profit and CTenure. (Display the numbers up to 2 Decimal places)

round(cor(store.df$Profit,store.df$CTenure),2)
## [1] 0.26

TASK 4k

Use R to construct the following Corrgram based on all variables in the dataset.

Critically think about how the Profit is correlated with the other variables (e.g. MTenure, CTenure, Sales, Pop, Comp etc).
Qualitatively discuss the managerially relevant correlations.

library(corrgram)
corrgram(store.df,order= FALSE,lower.panel = panel.shade,
         upper.panel = panel.pie, text.panel = panel.txt,
         main = "Corrgram of store variables")

TASK 4l - Pearson’s Correlation Tests

Run a Pearson’s Correlation test on the correlation between Profit and MTenure. What is the p-value?

cor.test(store.df$Profit,store.df$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

p-value:8.193e-05 for correlation between Profit and MTenure. ####Run a Pearson’s Correlation test on the correlation between Profit and CTenure. What is the p-value?

cor.test(store.df$Profit,store.df$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

p-value:0.02562 for correlation between Profit and CTenure.

TASK 4m - Regression Analysis

Run a regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.

summary(lm(Profit~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility, data=store.df))
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

TASK 4n

Based on TASK 3m, answer the following questions:

List the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05).

1.MTenure

2.CTenure

3.Comp

4.Pop

5.PedCount

6.Res

7.Hours24

List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05).

1.Visibility

TASK 4o

What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?

Ans- 760.993 is expected change in the Profit at a store.

What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month?

Ans- 944.978 is expected change in the Profit at a store.

TASK 4p

Please prepare an “Executive Summary”.

There is a statistically significant association between Profit and Mtenure, CTenure, Comp, Pop, PedCount, Res, Hours24 while on the other hand visibility is not in statistically significant association with Profit. There is a moderate positive correlation between Profit and MTenure and Profit and CTenure. Profit shows a highly negative correlation with Comp.

Since sales and profit made is directly related they are highly correlated.

On the basis of regression analysis, there is a need for more predictors, since the R-squared value is not too high. We got the values of all the variables of the linear model.

And our equation that is derived from the regression analysis is:

Profit = 7610.041 + 760.993 MTenure + 944.978 CTenure - 25286.887 Comp + 3.667 Pop + 34087.359 PedCount + 91584.675 Res + 63233.307 Hours24 + 12625.447 Visibility

But also we need to find more dependencies,relationships and other factors affecting these variables.