R Markdown

This is an R Markdown document in which the case Store24 (A): Managing Employee Retention is analysed and commands are run on R.

TASK 4c - Reading and generating summary statistics in R

setwd("D:/R Internship")
store<-read.csv(paste("Store24.csv",sep = ""))
View(store)
library(psych)
describe(store)
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max      range  skew kurtosis       se
## store           1.00      75.00      74.00  0.00    -1.25     2.52
## Sales      699306.00 2113089.00 1413783.00  0.71    -0.09 35164.25
## Profit     122180.00  518998.00  396818.00  0.62    -0.21 10323.49
## MTenure         0.00     277.99     277.99  2.01     3.90     6.66
## CTenure         0.89     114.15     113.26  3.52    15.00     2.04
## Pop          1046.00   26519.00   25473.00  0.62    -0.23   682.62
## Comp            1.65      11.13       9.48  2.48    11.31     0.15
## Visibility      2.00       5.00       3.00  0.25    -0.38     0.09
## PedCount        1.00       5.00       4.00  0.00    -0.52     0.11
## Res             0.00       1.00       1.00 -4.60    19.43     0.02
## Hours24         0.00       1.00       1.00 -1.82     1.32     0.04
## CrewSkill       2.06       4.64       2.58 -0.43     1.64     0.05
## MgrSkill        2.96       4.62       1.67  0.27    -0.53     0.05
## ServQual       57.90     100.00      42.10 -0.66    -0.72     1.46

TASK 4d - Use R to measure the mean and standard deviation of Profit,MTenure and CTenure

mean(store$Profit)
## [1] 276313.6
sd(store$Profit)
## [1] 89404.08
mean(store$MTenure)
## [1] 45.29644
sd(store$MTenure)
## [1] 57.67155
mean(store$CTenure)
## [1] 13.9315
sd(store$CTenure)       
## [1] 17.69752

The mean and sd of Profit is 276313.6 and 89404.08. The mean and sd of MTenure is 45.29644 and 57.67155. The mean and sd of CTenure is 13.9315 and 17.69752.

TASK 4e - Sorting and Subsetting data in R

attach(mtcars)
View(mtcars)
newdata <- mtcars[order(mpg),] # sort by mpg (ascending)
View(newdata)
newdata[1:5,] # see the first 5 rows
##                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
## Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
## Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
newdata <- mtcars[order(-mpg),] # sort by mpg (descending)
View(newdata)
detach(mtcars)     

TASK 4f - Replicate Exhibit 1 shown in the case, using R

store.max<-store[order(-store$Profit),]
View(store.max)
store.max10<-store.max[1:10,1:5]
View(store.max10)
store.min10<-store.max[66:75,1:5]
View(store.min10)    

TASK 4g - Scatter Plots

plot(store$MTenure,store$Profit,pch=19,cex=0.7,
     main="Scatterplot of Profit vs. MTenure",xlab ="MTenure",ylab = "Profit")
abline(lm(store$Profit~store$MTenure),col="green3")    

TASK 4h - Scatter Plots (contd.)

plot(store$CTenure,store$Profit,pch=19,cex=0.7,
     main="Scatterplot of Profit vs. CTenure",xlab ="CTenure",ylab = "Profit")
abline(lm(store$Profit~store$CTenure),col="green3")    

TASK 4i - Correlation Matrix

round(cor(store),2)   
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

TASK 4j - Correlations

round(cor(store$Profit,store$MTenure),2)
## [1] 0.44
round(cor(store$Profit,store$CTenure),2)  
## [1] 0.26

TASK 4k - Corrgram

library(corrgram)
## Warning: package 'corrgram' was built under R version 3.3.3
corrgram(store,lower.panel = panel.shade
         ,upper.panel = panel.pie,text.panel = panel.txt
         , main="Corrgram of store variables")  

From the Corrgram, we can see that there is a very high correlation between Profit and Sales. Profit has a high correlation with MTenure and a slightly lower correlation value with CTenure. So, the above 2 would be the manegerially relevant correlations. Profit has a good correlation with Pop, but has a slightly negative correlation value with respect to Comp.

TASK 4l - Pearson’s Correlation Tests

cor.test(store$Profit,store$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692
cor.test(store$Profit,store$CTenure)  
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

The p-value for the correlation between Profit and MTenure is 8.193e-05. The p-value for the correlation between Profit and CTenure is 0.02562.

TASK 4m - Regression Analysis

fit<-lm(Profit~MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility,data = store)
fit
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store)
## 
## Coefficients:
## (Intercept)      MTenure      CTenure         Comp          Pop  
##    7610.041      760.993      944.978   -25286.887        3.667  
##    PedCount          Res      Hours24   Visibility  
##   34087.359    91584.675    63233.307    12625.447
summary(fit) 
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

TASK 4n

List the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05). MTenure,CTenure,Comp,Pop,PedCount,Res,Hours24 are the explanatory variables whose beta-coefficients are statistically significant.

List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05). Visibility is the only explanatory variable whose beta-coefficiants are not statistically significant.

TASK 4o

What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month? The expected increase in profit is 760.993.

What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month? The expected increase in profit is 944.978.

TASK 4p - Executive Summary

This dataset contains the details of 75 stores, like the average tenures of the managers and crew members, its competitors and population within 0.5 mile radius. This dataset looks to establish the relationship between the performance of the company and its managers and crew tenures. In that respect, the cor.test function calculated the extent of correlation between these factors and we found out that there is very high correlation between the Profit and the Manager’s tenure and that there is a good correlation between Profit and Crew tenure, but not as much as the former. Through the Corrgram, we can establish many such correlations like between Profit and Population, Population and PedCOunt, between Profit and PedCOunt,etc. By creating the linear regression model with Profit being dependent on factors like MTenure, CTenure, Pop, PedCount, Comp, Res, Hours24, Visibility, etc. By looking at the coefficients and the p-values, apart from visibility all other factors impact profit and f-statistic gives a very small p-value, implying that the model explains the relationship between profit and the independent variables.