Summary of Data

describe(store)
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max      range  skew kurtosis       se
## store           1.00      75.00      74.00  0.00    -1.25     2.52
## Sales      699306.00 2113089.00 1413783.00  0.71    -0.09 35164.25
## Profit     122180.00  518998.00  396818.00  0.62    -0.21 10323.49
## MTenure         0.00     277.99     277.99  2.01     3.90     6.66
## CTenure         0.89     114.15     113.26  3.52    15.00     2.04
## Pop          1046.00   26519.00   25473.00  0.62    -0.23   682.62
## Comp            1.65      11.13       9.48  2.48    11.31     0.15
## Visibility      2.00       5.00       3.00  0.25    -0.38     0.09
## PedCount        1.00       5.00       4.00  0.00    -0.52     0.11
## Res             0.00       1.00       1.00 -4.60    19.43     0.02
## Hours24         0.00       1.00       1.00 -1.82     1.32     0.04
## CrewSkill       2.06       4.64       2.58 -0.43     1.64     0.05
## MgrSkill        2.96       4.62       1.67  0.27    -0.53     0.05
## ServQual       57.90     100.00      42.10 -0.66    -0.72     1.46

Mean and Standard Deviation

Mean of Profit

mean(store$Profit)
## [1] 276313.6

Standard Deviation of Profit

sd(store$Profit)
## [1] 89404.08

Mean of MTenure

mean(store$MTenure)
## [1] 45.29644

Standard Deviation of MTenure

sd(store$MTenure)
## [1] 57.67155

Mean of CTenure

mean(store$CTenure)
## [1] 13.9315

Standard Deviation of CTenure

sd(store$CTenure)
## [1] 17.69752

Most Profitable

top<-store[order(-store$Profit),]
head(top[,1:5],10)
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550

Least Profitable

tail(top[,1:5],10)
##    store   Sales Profit     MTenure   CTenure
## 37    37 1202917 187765  23.1985000  1.347023
## 61    61  716589 177046  21.8184200 13.305950
## 52    52 1073008 169201  24.1185600  3.416838
## 54    54  811190 159792   6.6703910  3.876797
## 13    13  857843 152513   0.6571813  1.577002
## 32    32  828918 149033  36.0792600  6.636550
## 55    55  925744 147672   6.6703910 18.365500
## 41    41  744211 147327  14.9180200 11.926080
## 66    66  879581 146058 115.2039000  3.876797
## 57    57  699306 122180  24.3485700  2.956879

Scatterplot of Profit vs Mtenure

scatterplot(Profit~ MTenure, data=store, main="Scatterplot of Profit vs MTenure")

Scatterplot of Profit vs Ctenure

scatterplot(Profit~ CTenure, data=store, main="Scatterplot of Profit vs CTenure")

Correllation of Variables

cor1<-cor(store[, c(1:14)])
format(round(cor1, 2), nsmall = 2)
##            store   Sales   Profit  MTenure CTenure Pop     Comp   
## store      " 1.00" "-0.23" "-0.20" "-0.06" " 0.02" "-0.29" " 0.03"
## Sales      "-0.23" " 1.00" " 0.92" " 0.45" " 0.25" " 0.40" "-0.24"
## Profit     "-0.20" " 0.92" " 1.00" " 0.44" " 0.26" " 0.43" "-0.33"
## MTenure    "-0.06" " 0.45" " 0.44" " 1.00" " 0.24" "-0.06" " 0.18"
## CTenure    " 0.02" " 0.25" " 0.26" " 0.24" " 1.00" " 0.00" "-0.07"
## Pop        "-0.29" " 0.40" " 0.43" "-0.06" " 0.00" " 1.00" "-0.27"
## Comp       " 0.03" "-0.24" "-0.33" " 0.18" "-0.07" "-0.27" " 1.00"
## Visibility "-0.03" " 0.13" " 0.14" " 0.16" " 0.07" "-0.05" " 0.03"
## PedCount   "-0.22" " 0.42" " 0.45" " 0.06" "-0.08" " 0.61" "-0.15"
## Res        "-0.03" "-0.17" "-0.16" "-0.06" "-0.34" "-0.24" " 0.22"
## Hours24    " 0.03" " 0.06" "-0.03" "-0.17" " 0.07" "-0.22" " 0.13"
## CrewSkill  " 0.05" " 0.16" " 0.16" " 0.10" " 0.26" " 0.28" "-0.04"
## MgrSkill   "-0.07" " 0.31" " 0.32" " 0.23" " 0.12" " 0.08" " 0.22"
## ServQual   "-0.32" " 0.39" " 0.36" " 0.18" " 0.08" " 0.12" " 0.02"
##            Visibility PedCount Res     Hours24 CrewSkill MgrSkill ServQual
## store      "-0.03"    "-0.22"  "-0.03" " 0.03" " 0.05"   "-0.07"  "-0.32" 
## Sales      " 0.13"    " 0.42"  "-0.17" " 0.06" " 0.16"   " 0.31"  " 0.39" 
## Profit     " 0.14"    " 0.45"  "-0.16" "-0.03" " 0.16"   " 0.32"  " 0.36" 
## MTenure    " 0.16"    " 0.06"  "-0.06" "-0.17" " 0.10"   " 0.23"  " 0.18" 
## CTenure    " 0.07"    "-0.08"  "-0.34" " 0.07" " 0.26"   " 0.12"  " 0.08" 
## Pop        "-0.05"    " 0.61"  "-0.24" "-0.22" " 0.28"   " 0.08"  " 0.12" 
## Comp       " 0.03"    "-0.15"  " 0.22" " 0.13" "-0.04"   " 0.22"  " 0.02" 
## Visibility " 1.00"    "-0.14"  " 0.02" " 0.05" "-0.20"   " 0.07"  " 0.21" 
## PedCount   "-0.14"    " 1.00"  "-0.28" "-0.28" " 0.21"   " 0.09"  "-0.01" 
## Res        " 0.02"    "-0.28"  " 1.00" "-0.09" "-0.15"   "-0.03"  " 0.09" 
## Hours24    " 0.05"    "-0.28"  "-0.09" " 1.00" " 0.11"   "-0.04"  " 0.06" 
## CrewSkill  "-0.20"    " 0.21"  "-0.15" " 0.11" " 1.00"   "-0.02"  "-0.03" 
## MgrSkill   " 0.07"    " 0.09"  "-0.03" "-0.04" "-0.02"   " 1.00"  " 0.36" 
## ServQual   " 0.21"    "-0.01"  " 0.09" " 0.06" "-0.03"   " 0.36"  " 1.00"

Correlation b/w Profit and Mtenure

cor2<-cor(store$Profit,store$MTenure)
format(round(cor2,2),nsmall = 2)
## [1] "0.44"

Correlation b/w Profit and Ctenure

cor2<-cor(store$Profit,store$CTenure)
format(round(cor2,2),nsmall = 2)
## [1] "0.26"

Corrgram of Variables

 corrgram(store, order=FALSE, lower.panel=panel.shade,
          upper.panel=panel.pie, text.panel=panel.txt,
          main="Corrgram of store variables")

Pearson’s Correlation Tests

For Profits and MTenure

table1<-xtabs(~Profit+MTenure, data=store)
chisq.test(table1)
## 
##  Pearson's Chi-squared test
## 
## data:  table1
## X-squared = 4425, df = 4366, p-value = 0.2625

For Profits and CTenure

table2<-xtabs(~Profit+CTenure, data=store)
chisq.test(table1)
## 
##  Pearson's Chi-squared test
## 
## data:  table1
## X-squared = 4425, df = 4366, p-value = 0.2625

Regression Analysis

reg<-lm(formula = Profit~ MTenure+ CTenure +Comp+ Pop+ PedCount+ Res+ Hours24+ Visibility,data = store)
summary(reg)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

The explanatory variables whose beta-coefficients are statistically significant (p < 0.05) include:

  1. MTenure 2. CTenure 3. Comp 4. Pop 5. PedCount 6. Res 7. Hours24

The explanatory variables whose beta-coefficients are statistically significant (p < 0.05) include:

  1. Visibility

The expected change in Profits with every one month increase in Manager’s Tenure is Rs 760.993 millions.

The expected change in Profits with every one month increase in Crew’s Tenure is Rs 944.978 millions.

Executive Summary

From the above analysis, light can be put upon some facts.

The mean tenure of managers in the store is about 45 months which is appreciable enough. The regressional analysis shows significant increase of 761 millions (INR) in profits with every 1 month increase in their tenure.

The mean tenure of the crew in the store is about 14 months which is not at all long. The regressional analysis shows an even significant increase of 945 millions (INR) in profits with every 1 month increase in their tenure.

This clears one point. Since, usually the managers tend to stay for a longer time, an increase in their tenure doesn’t affect the profits of the store as much as the crew does which usually tends to stay for a shorter period of time.

The scatterplots between profits and respective tenures support the analysis.

The location of the stores affect the sales and profits immensely.

The analysis proves that as the competition in half a mile radius increases the profits drop by 25300 million (INR).

The population around the store has some affects on the profits of the store but not as great as the other factors.

The pedestrian count int the region has great affects on the profits. With every one unit increase in the pedestrian count inthe region of the store, teh profits increase by around 34000 millions (INR).

Same goes for the volume of residents in the vicinity of the store. Its clear that as residents increace, the profits increase exponentially.

A 24 hours store speaks for itself. Its clear that if a store is open 24*7, the profits of the store is improved greatly.

Although visibility of the store seems to increase the sales of the store,the analysis proves that its not an important factor.