Task 4c

Using R, read the data into a data frame called store. Play close attention to Exhibit 3 - Summary Statistics from Sample Stores from the CASE. Using R, get the summary statistics of the data. Confirm that the summary statistics generated from R are consistent with Exhibit 3 from the Case.

View(stores.df)
summary(stores.df)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00
library(psych)

describe(stores.df[,2:11])[,c(1:4,8,9)]
##            vars  n       mean        sd       min        max
## Sales         1 75 1205413.12 304531.31 699306.00 2113089.00
## Profit        2 75  276313.61  89404.08 122180.00  518998.00
## MTenure       3 75      45.30     57.67      0.00     277.99
## CTenure       4 75      13.93     17.70      0.89     114.15
## Pop           5 75    9825.59   5911.67   1046.00   26519.00
## Comp          6 75       3.79      1.31      1.65      11.13
## Visibility    7 75       3.08      0.75      2.00       5.00
## PedCount      8 75       2.96      0.99      1.00       5.00
## Res           9 75       0.96      0.20      0.00       1.00
## Hours24      10 75       0.84      0.37      0.00       1.00

Task 4d:

  1. Use R to measure the mean and standard deviation of Profit. =>mean
mean(stores.df$Profit)
## [1] 276313.6

=>standard deviation

sd(stores.df$Profit)
## [1] 89404.08
  1. Use R to measure the mean and standard deviation of MTenure. =>mean
mean(stores.df$MTenure)
## [1] 45.29644

=>standard deviation

sd(stores.df$MTenure)
## [1] 57.67155

3)Use R to measure the mean and standard deviation of CTenure. =>mean

mean(stores.df$CTenure)
## [1] 13.9315

=>standard deviation

sd(stores.df$CTenure)
## [1] 17.69752

Task 4e: Sorting and Subsetting data in R

attach(mtcars)
View(mtcars)
newdata <- mtcars[order(mpg),]
View(newdata)
newdata[1:5,]
##                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
## Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
## Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
newdata <- mtcars[order(-mpg),]
View(newdata)
detach(mtcars)

Task 4f: Replicate Exhibit 1 shown in the case, using R

  1. Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the top 10 most profitable stores.
topten.df <- stores.df[order(-stores.df$Profit),]
topten.df[1:10,1:5,]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
  1. Use R to print the {StoreID, Sales, Profit, MTenure, CTenure} of the bottom 10 least profitable stores.
leastprofitable <- stores.df[order(stores.df$Profit),]
leastprofitable[1:10,1:5,]
##    store   Sales Profit     MTenure   CTenure
## 57    57  699306 122180  24.3485700  2.956879
## 66    66  879581 146058 115.2039000  3.876797
## 41    41  744211 147327  14.9180200 11.926080
## 55    55  925744 147672   6.6703910 18.365500
## 32    32  828918 149033  36.0792600  6.636550
## 13    13  857843 152513   0.6571813  1.577002
## 54    54  811190 159792   6.6703910  3.876797
## 52    52 1073008 169201  24.1185600  3.416838
## 61    61  716589 177046  21.8184200 13.305950
## 37    37 1202917 187765  23.1985000  1.347023

Task 4g: Scatter Plots

  1. Use R to draw a scatter plot of Profit vs. MTenure.
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplot(stores.df$Profit ~ stores.df$MTenure , main="Profit vs MTenure Scatterplot", xlab="MTenure", ylab="Profit")

Task 4h: Scatter Plots (contd.)

  1. Use R to draw a scatter plot of Profit vs. CTenure.
library(car)
scatterplot(stores.df$Profit ~ stores.df$CTenure , main="Profit vs CTenure Scatterplot", xlab="CTenure", ylab="Profit")

Task 4i: Correlation Matrix

  1. Use R to construct a Correlation Matrix for all the variables in the dataset. (Display the numbers up to 2 Decimal places)
cor <- cor(stores.df)
round(cor,2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

Task 4j: Correlations

  1. Use R to measure the correlation between Profit and MTenure. (Display the numbers up to 2 Decimal places)
round(cor(stores.df$Profit, stores.df$MTenure),2)
## [1] 0.44
  1. Use R to measure the correlation between Profit and CTenure. (Display the numbers up to 2 Decimal places)
round(cor(stores.df$Profit, stores.df$CTenure),2)
## [1] 0.26

Task 4k:

  1. Use R to construct the following Corrgram based on all variables in the dataset.
library(corrgram)
corrgram(stores.df,lower.panel = panel.shade,upper.panel=panel.pie,text.panel = panel.txt,main="Corrgram of Store Variables")

#Task 4l: Pearson’s Correlation Tests 12) Run a Pearson’s Correlation test on the correlation between Profit and MTenure. What is the p-value?

cor.test(stores.df$Profit,stores.df$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  stores.df$Profit and stores.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

=> p value is 8.193e-05

13)Run a Pearson’s Correlation test on the correlation between Profit and CTenure. What is the p-value?

cor.test(stores.df$Profit,stores.df$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  stores.df$Profit and stores.df$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

=> p value is 0.02562

Task 3m: Regression Analysis

  1. Run a regression of Profit on {MTenure, CTenure Comp, Pop, PedCount, Res, Hours24, Visibility}.
summary(lm(Profit~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility, data=stores.df))
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = stores.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

Task: 4n:

15)List the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05). => Explanatory variable(s) whose beta-coefficients are not statistically significant are MTenure, CTenure, Pop, PedCount, Res, Hours24, Comp

  1. List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05). => Explanatory variable whose beta coffecient is statistically not significant is Visibility #Task 40:

17)What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month? => Expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month = $810.971201

18)What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month? => Expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month = $1016.017324

Task 4p: Executive Summary

Please prepare an “Executive Summary”. Please add this to the end of your Rmd file. Specifically, please create a qualitative summary of Managerial Insights, based on your data analysis, especially your Regression Analysis. You may write this in paragraph form or in point form. => So from the above corrgram obtained we can say that Profit is correlated to MTenure, CTenure, Pop, CrewSkill, MgrSkill and ServQual.We can see that the skills of manager and the crew of a store is tightly correlated to the Profit.

The MTenure and CTenure is more tightly correlated to the Profit of the store. So retaining a Manager and Crew Member is very much Important. Therefore We can say that retaining an Employee and a Manager is very much important in making profits. Obviously as the Sales increses profits also increase which can be seen though the corrgram above.

The Visibilty is weakly correlated with the Profit as the Store24 is itself a brand and we don’t need to care about Visibility. Also we can say from the regression analysis that the an increase in Manager’s experience with Store24 can increase the store’s profit by USD 760.993.

And we can say from the regression analysis that the an increase in Crew’s experience with Store24 can increase the store’s profit by USD 944.978.