TASK 4C

store.df <- read.csv(paste("store24.csv"))
View(store.df)
summary(store.df)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00
library(psych)
describe(store.df)
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max      range  skew kurtosis       se
## store           1.00      75.00      74.00  0.00    -1.25     2.52
## Sales      699306.00 2113089.00 1413783.00  0.71    -0.09 35164.25
## Profit     122180.00  518998.00  396818.00  0.62    -0.21 10323.49
## MTenure         0.00     277.99     277.99  2.01     3.90     6.66
## CTenure         0.89     114.15     113.26  3.52    15.00     2.04
## Pop          1046.00   26519.00   25473.00  0.62    -0.23   682.62
## Comp            1.65      11.13       9.48  2.48    11.31     0.15
## Visibility      2.00       5.00       3.00  0.25    -0.38     0.09
## PedCount        1.00       5.00       4.00  0.00    -0.52     0.11
## Res             0.00       1.00       1.00 -4.60    19.43     0.02
## Hours24         0.00       1.00       1.00 -1.82     1.32     0.04
## CrewSkill       2.06       4.64       2.58 -0.43     1.64     0.05
## MgrSkill        2.96       4.62       1.67  0.27    -0.53     0.05
## ServQual       57.90     100.00      42.10 -0.66    -0.72     1.46

TASK 4D (1)The mean and standard deviation of Profit

mean(store.df$Profit)
## [1] 276313.6
sd(store.df$Profit)
## [1] 89404.08

TASK 4D (2)The mean and standard deviation of MTenure

mean(store.df$MTenure)
## [1] 45.29644
sd(store.df$MTenure)
## [1] 57.67155

TASK 4D (3)The mean and standard deviation of CTenure

mean(store.df$CTenure)
## [1] 13.9315
sd(store.df$CTenure)
## [1] 17.69752

TASK 4E

attach(mtcars)
View(mtcars)
newdata <- mtcars[order(mpg),] # sort by mpg (ascending)
View(newdata)
newdata[1:5,] # see the first 5 rows
##                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
## Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
## Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
newdata <- mtcars[order(-mpg),] # sort by mpg (descending)
View(newdata)
detach(mtcars)

TASK 4F (1)

attach(store.df)
newdata1 <- store.df[order(Profit),] # sort by price (ascending)
View(newdata1)
newdata[1:10, 1:5]
##                 mpg cyl  disp  hp drat
## Toyota Corolla 33.9   4  71.1  65 4.22
## Fiat 128       32.4   4  78.7  66 4.08
## Honda Civic    30.4   4  75.7  52 4.93
## Lotus Europa   30.4   4  95.1 113 3.77
## Fiat X1-9      27.3   4  79.0  66 4.08
## Porsche 914-2  26.0   4 120.3  91 4.43
## Merc 240D      24.4   4 146.7  62 3.69
## Datsun 710     22.8   4 108.0  93 3.85
## Merc 230       22.8   4 140.8  95 3.92
## Toyota Corona  21.5   4 120.1  97 3.70

TASK 4F (2)

newdata2 <- store.df[order(-Profit),] # sort by price (descending)
View(newdata2)
newdata[1:10, 1:5] # see the first 5 rows
##                 mpg cyl  disp  hp drat
## Toyota Corolla 33.9   4  71.1  65 4.22
## Fiat 128       32.4   4  78.7  66 4.08
## Honda Civic    30.4   4  75.7  52 4.93
## Lotus Europa   30.4   4  95.1 113 3.77
## Fiat X1-9      27.3   4  79.0  66 4.08
## Porsche 914-2  26.0   4 120.3  91 4.43
## Merc 240D      24.4   4 146.7  62 3.69
## Datsun 710     22.8   4 108.0  93 3.85
## Merc 230       22.8   4 140.8  95 3.92
## Toyota Corona  21.5   4 120.1  97 3.70

TASK 4G

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatter.smooth(store.df$Profit~store.df$MTenure,lpars=list(col="red",lty='dashed',lwd=3),main="Scatter Plot Of profit vs M tenure",xlab="MTenure", ylab="Profit",cex=0.6)
abline(lm(store.df$Profit~store.df$MTenure),col='green')

TASK 4H

library(car)
scatter.smooth(store.df$Profit~store.df$CTenure,lpars=list(col="red",lty='dashed',lwd=3),main="Scatter Plot Of profit vs C tenure",xlab="CTenure", ylab="Profit",cex=0.6)
abline(lm(store.df$Profit~store.df$CTenure),col='green')

TASK 4I

round(cor(store.df),2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00

TASK 4J (1)Measure the correlation between Profit and MTenure

round(cor(store.df$Profit,store.df$MTenure),2)
## [1] 0.44

TASK 4J (2)Measure the correlation between Profit and CTenure

round(cor(store.df$Profit,store.df$CTenure),2)
## [1] 0.26

TASK 4K

library(corrgram)
corrgram(store.df, order = T, text.panel=panel.txt,
         lower.panel = panel.shade,
         upper.panel = panel.pie, main="Corrgram of store variables")

TASK 4L (1)

cor.test(store.df$Profit,store.df$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

TASK 4L (2)

cor.test(store.df$Profit,store.df$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

TASK 3M

reg <- lm(Profit~MTenure+CTenure+Comp+Pop+PedCount+Res+Hours24+Visibility, data = store.df)
summary(reg)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

TASK 4N List the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05)

MTenure, CTenure, Comp, Pop, PedCount, Res, Hours24

TASK 4N List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05)

Visibility

TASK 4O (1) What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month?

Expected change in profit of a store, if Manager’s tenure increases by one month is 760.993

TASK 4O (2) What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month?

Expected change in profit of a store, if Manager’s tenure increases by one month is 944.978

TASK 4P EXECUTIVE SUMMARY

While calculating the deviations, it is clear that their is a large deviation in profits, Manager’s Tenure, Crew’s Tenure due to varying number of factors. The scatterplot and the corrgram further provides more insights by giving a clear degree of correlation between profit and manager’s tenure and profit and crew’s tenure. It can be seen that profit is correlated to both Manager’s tenure as well as Crew’s tenure.Also, the most profitable store is store57 and least one is store74.Additionaly, by using regression analysis we can infer that visibility doesnot affect profit, except it all factors affect profit.