Task 4a- prepare a list of the most important questions that matter.

1.How significantly does each variable affect the profit at the stores?

2.Once we realise, what are the most significant variables that lead to profit, what turns out to be the most effective stratey to retain them?

3.Upto what value of the tenure of the managers and the crew matters, and after what extent it will no longer affect the financial performance of the store.

4.

Task 4c

store <- read.csv(paste("Store24.csv", sep = ""))
View(store)
summary(store)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

Task 4d

mean(store$Profit)
## [1] 276313.6
mean(store$MTenure)
## [1] 45.29644
mean(store$CTenure)
## [1] 13.9315
sd(store$Profit)
## [1] 89404.08
sd(store$MTenure)
## [1] 57.67155
sd(store$CTenure)
## [1] 17.69752

Task 4e

attach(mtcars)
View(mtcars)
newdata <- mtcars[order(mpg),]
View(newdata)
newdata[1:5,]
##                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
## Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
## Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
newdata <- mtcars[order(-mpg),]
View(newdata)

Task 4f

attach(store)
## The following object is masked _by_ .GlobalEnv:
## 
##     store
newdata1 <- store[order(-Profit),]
View(newdata1)
newdata1[1:10,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
newdata1 <- store[order(Profit),]
View(newdata1)
newdata1[1:10,1:5]
##    store   Sales Profit     MTenure   CTenure
## 57    57  699306 122180  24.3485700  2.956879
## 66    66  879581 146058 115.2039000  3.876797
## 41    41  744211 147327  14.9180200 11.926080
## 55    55  925744 147672   6.6703910 18.365500
## 32    32  828918 149033  36.0792600  6.636550
## 13    13  857843 152513   0.6571813  1.577002
## 54    54  811190 159792   6.6703910  3.876797
## 52    52 1073008 169201  24.1185600  3.416838
## 61    61  716589 177046  21.8184200 13.305950
## 37    37 1202917 187765  23.1985000  1.347023

Task 4g

library(car)
scatterplot(MTenure, Profit)

Task 4h

scatterplot(CTenure, Profit)

Task 4i

library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:car':
## 
##     logit
library(corrplot)
## corrplot 0.84 loaded
corr.test(store, use="complete")
## Call:corr.test(x = store, use = "complete")
## Correlation matrix 
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00
## Sample Size 
## [1] 75
## Probability values (Entries above the diagonal are adjusted for multiple tests.) 
##            store Sales Profit MTenure CTenure  Pop Comp Visibility
## store       0.00  1.00   1.00    1.00    1.00 0.89 1.00       1.00
## Sales       0.05  0.00   0.00    0.00    1.00 0.03 1.00       1.00
## Profit      0.09  0.00   0.00    0.01    1.00 0.01 0.26       1.00
## MTenure     0.63  0.00   0.00    0.00    1.00 1.00 1.00       1.00
## CTenure     0.87  0.03   0.03    0.04    0.00 1.00 1.00       1.00
## Pop         0.01  0.00   0.00    0.60    0.99 0.00 1.00       1.00
## Comp        0.79  0.04   0.00    0.12    0.55 0.02 0.00       1.00
## Visibility  0.82  0.26   0.25    0.18    0.57 0.67 0.81       0.00
## PedCount    0.06  0.00   0.00    0.60    0.47 0.00 0.21       0.23
## Res         0.79  0.15   0.17    0.60    0.00 0.04 0.06       0.85
## Hours24     0.82  0.59   0.83    0.16    0.53 0.06 0.27       0.69
## CrewSkill   0.68  0.16   0.17    0.39    0.03 0.01 0.72       0.09
## MgrSkill    0.54  0.01   0.00    0.05    0.29 0.48 0.05       0.53
## ServQual    0.00  0.00   0.00    0.12    0.49 0.29 0.88       0.07
##            PedCount  Res Hours24 CrewSkill MgrSkill ServQual
## store          1.00 1.00    1.00      1.00     1.00     0.37
## Sales          0.01 1.00    1.00      1.00     0.49     0.05
## Profit         0.00 1.00    1.00      1.00     0.37     0.11
## MTenure        1.00 1.00    1.00      1.00     1.00     1.00
## CTenure        1.00 0.22    1.00      1.00     1.00     1.00
## Pop            0.00 1.00    1.00      1.00     1.00     1.00
## Comp           1.00 1.00    1.00      1.00     1.00     1.00
## Visibility     1.00 1.00    1.00      1.00     1.00     1.00
## PedCount       0.00 0.99    1.00      1.00     1.00     1.00
## Res            0.01 0.00    1.00      1.00     1.00     1.00
## Hours24        0.02 0.45    0.00      1.00     1.00     1.00
## CrewSkill      0.07 0.19    0.37      0.00     1.00     1.00
## MgrSkill       0.46 0.78    0.74      0.86     0.00     0.14
## ServQual       0.96 0.44    0.62      0.78     0.00     0.00
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option

Task 4j

x <- store[, c("Profit")]
y <- store[, c("MTenure")]
cor(x,y)
## [1] 0.4388692
x <- store[, c("Profit")]
y <- store[, c("CTenure")]
cor(x,y)
## [1] 0.2576789

Task 4k

library(corrgram)
corrgram(store, order = FALSE, lower.panel = panel.shade, upper.panel = panel.pie, text.panel= panel.txt, main = "Corrgram of store variables")

Task 4l

cor.test(store[, "Profit"], store[, "MTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store[, "Profit"] and store[, "MTenure"]
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692

the p value is 0.44

cor.test(store[, "Profit"], store[, "CTenure"])
## 
##  Pearson's product-moment correlation
## 
## data:  store[, "Profit"] and store[, "CTenure"]
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789

the p value is 0.44

Task 4m

model <- lm(Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility, data= store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

Task 4n

model <- lm(Profit ~ MTenure, data = store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ MTenure, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -177817  -52029   -8635   50871  188316 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 245496.3    11906.4  20.619  < 2e-16 ***
## MTenure        680.3      163.0   4.173 8.19e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80880 on 73 degrees of freedom
## Multiple R-squared:  0.1926, Adjusted R-squared:  0.1815 
## F-statistic: 17.41 on 1 and 73 DF,  p-value: 8.193e-05
model$coefficients
## (Intercept)     MTenure 
## 245496.2904    680.3475
model <- lm(Profit ~ CTenure, data= store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ CTenure, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -139848  -64869   -9022   45057  222393 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 258178.4    12814.4  20.148   <2e-16 ***
## CTenure       1301.7      571.3   2.279   0.0256 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 86970 on 73 degrees of freedom
## Multiple R-squared:  0.0664, Adjusted R-squared:  0.05361 
## F-statistic: 5.192 on 1 and 73 DF,  p-value: 0.02562
model$coefficients
## (Intercept)     CTenure 
##  258178.442    1301.739
model <- lm(Profit ~ Comp, data= store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ Comp, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -172707  -65521  -24559   56628  209205 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   362702      30119  12.042  < 2e-16 ***
## Comp          -22807       7520  -3.033  0.00335 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 84830 on 73 degrees of freedom
## Multiple R-squared:  0.1119, Adjusted R-squared:  0.09975 
## F-statistic:   9.2 on 1 and 73 DF,  p-value: 0.003351
model$coefficients
## (Intercept)        Comp 
##   362702.27   -22807.37
model <- lm(Profit ~ Pop, data= store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ Pop, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152198  -52285  -17228   43501  235602 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 2.123e+05  1.829e+04  11.611  < 2e-16 ***
## Pop         6.513e+00  1.598e+00   4.077 0.000115 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 81240 on 73 degrees of freedom
## Multiple R-squared:  0.1854, Adjusted R-squared:  0.1743 
## F-statistic: 16.62 on 1 and 73 DF,  p-value: 0.000115
model$coefficients
## (Intercept)         Pop 
## 212323.4932      6.5126
model <- lm(Profit ~ PedCount, data= store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ PedCount, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -131878  -57678   -1538   45741  200501 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   156254      29373   5.320 1.09e-06 ***
## PedCount       40561       9415   4.308 5.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80370 on 73 degrees of freedom
## Multiple R-squared:  0.2027, Adjusted R-squared:  0.1918 
## F-statistic: 18.56 on 1 and 73 DF,  p-value: 5.057e-05
model$coefficients
## (Intercept)    PedCount 
##   156253.57    40560.82
model <- lm(Profit ~ Res, data= store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ Res, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -151243  -62419   -9467   57891  245575 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   345696      51305   6.738 3.18e-09 ***
## Res           -72273      52363  -1.380    0.172    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 88860 on 73 degrees of freedom
## Multiple R-squared:  0.02543,    Adjusted R-squared:  0.01208 
## F-statistic: 1.905 on 1 and 73 DF,  p-value: 0.1717
model$coefficients
## (Intercept)         Res 
##   345695.67   -72272.97
model <- lm(Profit ~ Hours24, data= store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ Hours24, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -153138  -64315  -11246   52884  237458 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   281540      25976   10.84   <2e-16 ***
## Hours24        -6222      28342   -0.22    0.827    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 89980 on 73 degrees of freedom
## Multiple R-squared:  0.0006598,  Adjusted R-squared:  -0.01303 
## F-statistic: 0.0482 on 1 and 73 DF,  p-value: 0.8268
model$coefficients
## (Intercept)     Hours24 
##  281540.417   -6222.385
model <- lm(Profit ~ Visibility, data= store)
summary(model)
## 
## Call:
## lm(formula = Profit ~ Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152838  -63359  -10946   43839  243980 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   226431      43854   5.163 2.02e-06 ***
## Visibility     16196      13840   1.170    0.246    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 89180 on 73 degrees of freedom
## Multiple R-squared:  0.01841,    Adjusted R-squared:  0.004966 
## F-statistic: 1.369 on 1 and 73 DF,  p-value: 0.2457
model$coefficients
## (Intercept)  Visibility 
##   226430.94    16195.67

statistically significant variables are :MTenure, CTenure Comp, Pop, PedCount(with p-values less than 0.05)

statistically in-significant variables are : res, Hours24, Visibility

(with p-values less than 0.05)

Task 4o:

Formula for Profit and MTenure:

Profit = 680Mtenure + 245496 #Formula for Profit amd CTenure:; #Profit = 6.51Ctenure + 2.12e+05

So expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month is 680.

And expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month is 6.51

Task 4p:

Executive summary:

1. Almost always, the profit of a store is more if the value of the managerial tenure at the store is greater than the value of the crew tenure.

2. For lower values of MTenure, the graph is less steep as compared to the case of the graph with the lower values on CTenure, which means for smaller range of values, increasing CTenure has a greater effect on the profit, as compared to MTenure.Not only that, MTenure affects the profits less steeply after crossing the value of ‘200 months’ (approx.) and in the case of CTenure, it is ‘70 months’(approx.).

3. In the corrgram plotted, the blue rectangles for ‘Mangerial skills’ and ‘Service quality’ are positive(blue color, ofcourse), and darker which suggests that while focusing on the factors that will improve the profits of the stores the most, career development for mangers is beneficial, and training program for the crew, as if they retain longer, they will provide better service(this is said in keeping in assumption of the idea that the service offered by the crew depends on what they learn and not what they earn;))

4. The coefficient for ‘Pop’ is least, which means the profit of a store is least affected(in increased) as compared to all other factors.