#Task 4c 
store<- read.csv("Store24.csv")
summary(store)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00
library(psych)
describe(store)[,1:9]
##            vars  n       mean        sd     median    trimmed       mad
## store         1 75      38.00     21.79      38.00      38.00     28.17
## Sales         2 75 1205413.12 304531.31 1127332.00 1182031.25 288422.04
## Profit        3 75  276313.61  89404.08  265014.00  270260.34  90532.00
## MTenure       4 75      45.30     57.67      24.12      33.58     29.67
## CTenure       5 75      13.93     17.70       7.21      10.60      6.14
## Pop           6 75    9825.59   5911.67    8896.00    9366.07   7266.22
## Comp          7 75       3.79      1.31       3.63       3.66      0.82
## Visibility    8 75       3.08      0.75       3.00       3.07      0.00
## PedCount      9 75       2.96      0.99       3.00       2.97      1.48
## Res          10 75       0.96      0.20       1.00       1.00      0.00
## Hours24      11 75       0.84      0.37       1.00       0.92      0.00
## CrewSkill    12 75       3.46      0.41       3.50       3.47      0.34
## MgrSkill     13 75       3.64      0.41       3.59       3.62      0.45
## ServQual     14 75      87.15     12.61      89.47      88.62     15.61
##                  min        max
## store           1.00      75.00
## Sales      699306.00 2113089.00
## Profit     122180.00  518998.00
## MTenure         0.00     277.99
## CTenure         0.89     114.15
## Pop          1046.00   26519.00
## Comp            1.65      11.13
## Visibility      2.00       5.00
## PedCount        1.00       5.00
## Res             0.00       1.00
## Hours24         0.00       1.00
## CrewSkill       2.06       4.64
## MgrSkill        2.96       4.62
## ServQual       57.90     100.00
#Task 4d
#mean and standard deviation of Profit.
mean(store$Profit)  
## [1] 276313.6
sd(store$Profit)
## [1] 89404.08
#mean and standard deviation of MTenure.
mean(store$MTenure)  
## [1] 45.29644
sd(store$MTenure)
## [1] 57.67155
##mean and standard deviation of MTenure.
mean(store$CTenure)
## [1] 13.9315
sd(store$CTenure)
## [1] 17.69752
#Task 4f
descStore<- store[order(-store$Profit),]

#Top 10 most profitable stores
head(descStore,10)[,1:5]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
#Top 10 least profitable sotres
tail(descStore,10)[,1:5]
##    store   Sales Profit     MTenure   CTenure
## 37    37 1202917 187765  23.1985000  1.347023
## 61    61  716589 177046  21.8184200 13.305950
## 52    52 1073008 169201  24.1185600  3.416838
## 54    54  811190 159792   6.6703910  3.876797
## 13    13  857843 152513   0.6571813  1.577002
## 32    32  828918 149033  36.0792600  6.636550
## 55    55  925744 147672   6.6703910 18.365500
## 41    41  744211 147327  14.9180200 11.926080
## 66    66  879581 146058 115.2039000  3.876797
## 57    57  699306 122180  24.3485700  2.956879
#Task 4g
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
#Scatter Plot Profit Vs MTenure
scatterplot(Profit~MTenure, data=store, main = "Scatterplot of Profit Vs MTenure", ylab="Profit", xlab="MTenure", cex=0.5, pch=19)

#Scatter plot of Profit Vs CTenure
scatterplot(Profit~CTenure, data=store, main = "Scatterplot of Profit Vs CTenure", ylab="Profit", xlab="CTenure", cex=0.5, pch=19)

#Task4i  Correlation Matrix
round(cor(store),2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.23  -0.20   -0.06    0.02 -0.29  0.03      -0.03
## Sales      -0.23  1.00   0.92    0.45    0.25  0.40 -0.24       0.13
## Profit     -0.20  0.92   1.00    0.44    0.26  0.43 -0.33       0.14
## MTenure    -0.06  0.45   0.44    1.00    0.24 -0.06  0.18       0.16
## CTenure     0.02  0.25   0.26    0.24    1.00  0.00 -0.07       0.07
## Pop        -0.29  0.40   0.43   -0.06    0.00  1.00 -0.27      -0.05
## Comp        0.03 -0.24  -0.33    0.18   -0.07 -0.27  1.00       0.03
## Visibility -0.03  0.13   0.14    0.16    0.07 -0.05  0.03       1.00
## PedCount   -0.22  0.42   0.45    0.06   -0.08  0.61 -0.15      -0.14
## Res        -0.03 -0.17  -0.16   -0.06   -0.34 -0.24  0.22       0.02
## Hours24     0.03  0.06  -0.03   -0.17    0.07 -0.22  0.13       0.05
## CrewSkill   0.05  0.16   0.16    0.10    0.26  0.28 -0.04      -0.20
## MgrSkill   -0.07  0.31   0.32    0.23    0.12  0.08  0.22       0.07
## ServQual   -0.32  0.39   0.36    0.18    0.08  0.12  0.02       0.21
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.22 -0.03    0.03      0.05    -0.07    -0.32
## Sales          0.42 -0.17    0.06      0.16     0.31     0.39
## Profit         0.45 -0.16   -0.03      0.16     0.32     0.36
## MTenure        0.06 -0.06   -0.17      0.10     0.23     0.18
## CTenure       -0.08 -0.34    0.07      0.26     0.12     0.08
## Pop            0.61 -0.24   -0.22      0.28     0.08     0.12
## Comp          -0.15  0.22    0.13     -0.04     0.22     0.02
## Visibility    -0.14  0.02    0.05     -0.20     0.07     0.21
## PedCount       1.00 -0.28   -0.28      0.21     0.09    -0.01
## Res           -0.28  1.00   -0.09     -0.15    -0.03     0.09
## Hours24       -0.28 -0.09    1.00      0.11    -0.04     0.06
## CrewSkill      0.21 -0.15    0.11      1.00    -0.02    -0.03
## MgrSkill       0.09 -0.03   -0.04     -0.02     1.00     0.36
## ServQual      -0.01  0.09    0.06     -0.03     0.36     1.00
#Task 4j  Correlations

#Correlation between MTenure and Profit
round(cor(store),2)[3,4]
## [1] 0.44
#Correlation between CTenure and Profit
round(cor(store),2)[3,5]
## [1] 0.26
#TASK 4k 
library(corrgram)
## Warning: replacing previous import by 'magrittr::%>%' when loading
## 'dendextend'
corrgram(store, lower.panel=panel.shade,
         upper.panel=panel.pie, text.panel=panel.txt,
         main="Corrgram of store variables")

Managerially relevant correlations?

Profit is positively correlated with 1. MTenure 2. CTenure 3. Pop 4. PedCount 5. CrewSkill 6. MgrSkill 7. ServQual

  1. Managers and crews’experience and skills are two important factors contribute positively to the profit of Store24.

  2. Population density within 1/2 mile of neighbourhood of store is also affect positively to the profit of Store24.

  3. Ratings for service quality and pedestrain rating is highly correlated with the profit.

#TASK 4l - Pearson’s Correlation Tests

#correlation between Profit and MTenure.
cor.test(store$Profit,store$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692
#P-value
cor.test(store$Profit,store$MTenure)$p.value
## [1] 8.193133e-05
#correlation between Profit and CTenure.
cor.test(store$Profit,store$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store$Profit and store$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789
#P-value
cor.test(store$Profit,store$CTenure)$p.value
## [1] 0.0256203
#TASK 3m - Regression Analysis

model<- lm(Profit ~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility, data=store)

summary(model)
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12
 944.98*1.38 
## [1] 1304.072
 (34087.36+63233.31+ 12625.45)/3
## [1] 36648.71

List the explanatory variable(s) whose beta-coefficients are statistically significant (p < 0.05). MTenure, CTenure, Comp, Pop, PedCount, Res, Hours24

List the explanatory variable(s) whose beta-coefficients are not statistically significant (p > 0.05). Visibility

What is expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month? If managers experience on an average increases by one month then profit of Sotre24 increases by 760.993 times

What is expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month? If crew’s experience on an average increases by one month then profit of Store24 increases by 944.978 times

Executive Summary

There is a huge difference between the profits among the different store. On digging dipper, it’s find that 10 stores with the highest profit have on average 4 times more manager and crew’s tenure than the 10 least profit making stores. On analyzing further it comes out that manager tenure and crew tenure are among two big factors whereas manager tenure have multiplication effect of 760 and other have even more i.e. 944 multiplication effect on profit. It means on an average increase in one month of manager tenure and crew tenure increases profit estimates by 760 and 944 times, respectively. In nutshell, the decision taken to retain manager and crew for longer is beneficial and have the good return.

Store24’s recent manager bonus plan of providing a quarterly bonus of 3% of the manager’s salary for increasing average crew tenure by 1.38 months is legitimate. The expected change in the profit of store due to 1.38 month on an average increase in crew tenure relative to no increase is 1304 times. Interestingly change in profit due to increase in crew tenure is higher than manager tenure, therefore, this plan is well admissible.

Some other feature of the store like, is store open 24 hours? good ratings on the pedestrian and visibility are deeply connected with huge profit and manager and crew are responsible to affect the performance of the store. They ensure it in many ways like ensuring compliance with Store24 merchandising, operating standards, maintaining in-stock position, and managing shrink and cash control. It’s reasonable in financial perspective to give bonus or increase wages to motivate and retain them for the long tenure.