R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

TASK 4c

store.df <-read.csv(paste ("Store24.csv", sep=""))
View(store.df)
summary(store.df)
##      store          Sales             Profit          MTenure      
##  Min.   : 1.0   Min.   : 699306   Min.   :122180   Min.   :  0.00  
##  1st Qu.:19.5   1st Qu.: 984579   1st Qu.:211004   1st Qu.:  6.67  
##  Median :38.0   Median :1127332   Median :265014   Median : 24.12  
##  Mean   :38.0   Mean   :1205413   Mean   :276314   Mean   : 45.30  
##  3rd Qu.:56.5   3rd Qu.:1362388   3rd Qu.:331314   3rd Qu.: 50.92  
##  Max.   :75.0   Max.   :2113089   Max.   :518998   Max.   :277.99  
##     CTenure              Pop             Comp          Visibility  
##  Min.   :  0.8871   Min.   : 1046   Min.   : 1.651   Min.   :2.00  
##  1st Qu.:  4.3943   1st Qu.: 5616   1st Qu.: 3.151   1st Qu.:3.00  
##  Median :  7.2115   Median : 8896   Median : 3.629   Median :3.00  
##  Mean   : 13.9315   Mean   : 9826   Mean   : 3.788   Mean   :3.08  
##  3rd Qu.: 17.2156   3rd Qu.:14104   3rd Qu.: 4.230   3rd Qu.:4.00  
##  Max.   :114.1519   Max.   :26519   Max.   :11.128   Max.   :5.00  
##     PedCount         Res          Hours24       CrewSkill    
##  Min.   :1.00   Min.   :0.00   Min.   :0.00   Min.   :2.060  
##  1st Qu.:2.00   1st Qu.:1.00   1st Qu.:1.00   1st Qu.:3.225  
##  Median :3.00   Median :1.00   Median :1.00   Median :3.500  
##  Mean   :2.96   Mean   :0.96   Mean   :0.84   Mean   :3.457  
##  3rd Qu.:4.00   3rd Qu.:1.00   3rd Qu.:1.00   3rd Qu.:3.655  
##  Max.   :5.00   Max.   :1.00   Max.   :1.00   Max.   :4.640  
##     MgrSkill        ServQual     
##  Min.   :2.957   Min.   : 57.90  
##  1st Qu.:3.344   1st Qu.: 78.95  
##  Median :3.589   Median : 89.47  
##  Mean   :3.638   Mean   : 87.15  
##  3rd Qu.:3.925   3rd Qu.: 99.90  
##  Max.   :4.622   Max.   :100.00

TASK 4d

"mean"
## [1] "mean"
apply(store.df[,3:5],2,mean)
##       Profit      MTenure      CTenure 
## 276313.61333     45.29644     13.93150
"standar deviation"
## [1] "standar deviation"
apply(store.df[,3:5],2,sd)
##      Profit     MTenure     CTenure 
## 89404.07634    57.67155    17.69752

TASK 4e

attach(mtcars)
View(mtcars)
newdata <- mtcars[order(mpg),]
View(newdata)
newdata[1:5,]
##                      mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Cadillac Fleetwood  10.4   8  472 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8  460 215 3.00 5.424 17.82  0  0    3    4
## Camaro Z28          13.3   8  350 245 3.73 3.840 15.41  0  0    3    4
## Duster 360          14.3   8  360 245 3.21 3.570 15.84  0  0    3    4
## Chrysler Imperial   14.7   8  440 230 3.23 5.345 17.42  0  0    3    4
newdata <- mtcars[order(-mpg),]
View(newdata)
detach(mtcars)

TASK 4f

"TOP 10 most profitable"
## [1] "TOP 10 most profitable"
topten.df <- store.df[order(-store.df$Profit),]
topten.df[1:10,1:5,]
##    store   Sales Profit   MTenure    CTenure
## 74    74 1782957 518998 171.09720  29.519510
## 7      7 1809256 476355  62.53080   7.326488
## 9      9 2113089 474725 108.99350   6.061602
## 6      6 1703140 469050 149.93590  11.351130
## 44    44 1807740 439781 182.23640 114.151900
## 2      2 1619874 424007  86.22219   6.636550
## 45    45 1602362 410149  47.64565   9.166325
## 18    18 1704826 394039 239.96980  33.774130
## 11    11 1583446 389886  44.81977   2.036961
## 47    47 1665657 387853  12.84790   6.636550
"Bottom 10 least profitable"
## [1] "Bottom 10 least profitable"
leastprofitable <- store.df[order(store.df$Profit),]
leastprofitable[1:10,1:5,]
##    store   Sales Profit     MTenure   CTenure
## 57    57  699306 122180  24.3485700  2.956879
## 66    66  879581 146058 115.2039000  3.876797
## 41    41  744211 147327  14.9180200 11.926080
## 55    55  925744 147672   6.6703910 18.365500
## 32    32  828918 149033  36.0792600  6.636550
## 13    13  857843 152513   0.6571813  1.577002
## 54    54  811190 159792   6.6703910  3.876797
## 52    52 1073008 169201  24.1185600  3.416838
## 61    61  716589 177046  21.8184200 13.305950
## 37    37 1202917 187765  23.1985000  1.347023

TASK 4g

library(car)
scatterplot(store.df$Profit ~ store.df$MTenure , main="Profit vs MTenure Scatterplot", xlab="MTenure", ylab="Profit")

TASK 4h

library(car)
scatterplot(store.df$Profit ~ store.df$CTenure , main="Profit vs CTenure Scatterplot", xlab="CTenure", ylab="Profit")

TASK 4i

round(cor(store.df, use = "complete.obs", method = "kendall"),2)
##            store Sales Profit MTenure CTenure   Pop  Comp Visibility
## store       1.00 -0.16  -0.14   -0.01   -0.01 -0.19 -0.02      -0.02
## Sales      -0.16  1.00   0.78    0.26    0.14  0.20 -0.18       0.15
## Profit     -0.14  0.78   1.00    0.25    0.19  0.23 -0.26       0.14
## MTenure    -0.01  0.26   0.25    1.00    0.10 -0.04  0.12       0.01
## CTenure    -0.01  0.14   0.19    0.10    1.00 -0.13 -0.11       0.05
## Pop        -0.19  0.20   0.23   -0.04   -0.13  1.00 -0.11       0.01
## Comp       -0.02 -0.18  -0.26    0.12   -0.11 -0.11  1.00       0.07
## Visibility -0.02  0.15   0.14    0.01    0.05  0.01  0.07       1.00
## PedCount   -0.14  0.31   0.32    0.00   -0.05  0.46 -0.22      -0.11
## Res        -0.03 -0.13  -0.15    0.04   -0.10 -0.17  0.19       0.02
## Hours24     0.02  0.07   0.02   -0.09    0.02 -0.24  0.10       0.04
## CrewSkill  -0.03  0.11   0.11    0.12    0.17  0.16 -0.05      -0.18
## MgrSkill   -0.06  0.18   0.15    0.19    0.02  0.03  0.17       0.01
## ServQual   -0.23  0.28   0.25    0.17    0.06  0.06  0.06       0.16
##            PedCount   Res Hours24 CrewSkill MgrSkill ServQual
## store         -0.14 -0.03    0.02     -0.03    -0.06    -0.23
## Sales          0.31 -0.13    0.07      0.11     0.18     0.28
## Profit         0.32 -0.15    0.02      0.11     0.15     0.25
## MTenure        0.00  0.04   -0.09      0.12     0.19     0.17
## CTenure       -0.05 -0.10    0.02      0.17     0.02     0.06
## Pop            0.46 -0.17   -0.24      0.16     0.03     0.06
## Comp          -0.22  0.19    0.10     -0.05     0.17     0.06
## Visibility    -0.11  0.02    0.04     -0.18     0.01     0.16
## PedCount       1.00 -0.26   -0.29      0.12     0.05    -0.05
## Res           -0.26  1.00   -0.09     -0.16    -0.03     0.09
## Hours24       -0.29 -0.09    1.00      0.14     0.00     0.04
## CrewSkill      0.12 -0.16    0.14      1.00     0.05    -0.01
## MgrSkill       0.05 -0.03    0.00      0.05     1.00     0.24
## ServQual      -0.05  0.09    0.04     -0.01     0.24     1.00

TASK 4j

"Correlationg between Profit  MTenure"
## [1] "Correlationg between Profit  MTenure"
round(cor(store.df$Profit, store.df$MTenure),2)
## [1] 0.44
"Correlationg between Profit  CTenure"
## [1] "Correlationg between Profit  CTenure"
round(cor(store.df$Profit, store.df$CTenure),2)
## [1] 0.26

TASK 4k

library(corrgram)
corrgram(store.df, lower.panel=panel.shade, upper.panel=panel.pie,diag.pane=panel.minmax,text.panel=panel.txt, main="Corrgram of Store Variables")

Profit is positively correlated with MTenure, CTenure, Pop, and PedCount.

Profit is negatively correlated with Comp, which represents the retail competition

Managerially Relavant Correlations in the decreasing order of correlation value with the profit are:

Sales > PedCount > MTenure > Pop > ServQual

TASK 4l

cor.test(store.df$Profit,store.df$MTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$MTenure
## t = 4.1731, df = 73, p-value = 8.193e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2353497 0.6055175
## sample estimates:
##       cor 
## 0.4388692
"p value is 8.193e-05"
## [1] "p value is 8.193e-05"
cor.test(store.df$Profit,store.df$CTenure)
## 
##  Pearson's product-moment correlation
## 
## data:  store.df$Profit and store.df$CTenure
## t = 2.2786, df = 73, p-value = 0.02562
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03262507 0.45786339
## sample estimates:
##       cor 
## 0.2576789
"p value is 0.02562"
## [1] "p value is 0.02562"

TASK 4m

summary(lm(Profit~ MTenure + CTenure + Comp + Pop + PedCount + Res + Hours24 + Visibility, data=store.df))
## 
## Call:
## lm(formula = Profit ~ MTenure + CTenure + Comp + Pop + PedCount + 
##     Res + Hours24 + Visibility, data = store.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -105789  -35946   -7069   33780  112390 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7610.041  66821.994   0.114 0.909674    
## MTenure        760.993    127.086   5.988 9.72e-08 ***
## CTenure        944.978    421.687   2.241 0.028400 *  
## Comp        -25286.887   5491.937  -4.604 1.94e-05 ***
## Pop              3.667      1.466   2.501 0.014890 *  
## PedCount     34087.359   9073.196   3.757 0.000366 ***
## Res          91584.675  39231.283   2.334 0.022623 *  
## Hours24      63233.307  19641.114   3.219 0.001994 ** 
## Visibility   12625.447   9087.620   1.389 0.169411    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 56970 on 66 degrees of freedom
## Multiple R-squared:  0.6379, Adjusted R-squared:  0.594 
## F-statistic: 14.53 on 8 and 66 DF,  p-value: 5.382e-12

TASK 4n

Explanatory variable whose beta coffecient is statistically not significant is Visibility

explanatory variable(s) whose beta-coefficients are not statistically significant are MTenure, CTenure, Pop, PedCount, Res, Hours24, Comp

TASK 4o

Expected change in the Profit at a store, if the Manager’s tenure i.e. number of months of experience with Store24, increases by one month = $810.971201

Expected change in the Profit at a store, if the Crew’s tenure i.e. number of months of experience with Store24, increases by one month = $1016.017324

TASK 4p

From this analysis we can tell that the 10 most profitable stores have higher manager tenures and crew tenures than the 10 least profitable stores. Manager tenure has outliers because there are some managers who have very high experience. Crew tenure has very few outliers with crew members with high experience.

The highest correlation exists between profit and sales.

The number of competitors has a declining effect on Profit i.e. there will be adverse effect on profit if competitors increase

A greater increase in Profit is observed by increasing Crew’s tenure rather than the Manager’s tenure. Therefore, measures must be taken to increase Crew’s tenure.

Given that: F-statistic of 14.53; 8 datapoints; 66 degrees of freedom and p-value = 5.382e-12 we can say that Profit is closely related to {MTenure, CTenure, Comp, Pop, PedCount, Res, Hours24 and Visibility} all taken together as the p-value is very small.

From Multiple R-squared: 0.6379 we can say that this model accounts for 63.79% of the variances and Adjusted R-squared: 0.594 indicates 59.4% of weighted variances considered.

Profit = 7610.041 + 760.993(MTenure) + 944.978(CTenure) - 25286.887(Comp) + 3.667(Pop) + 34087.359(PedCount) + 91584.675(Res) + 63233.307(Hours24) + 12625.447(Visibility)