library(lubridate)
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:lubridate':
##
## intersect, setdiff, union
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(stringr)
library(caret)
## Loading required package: lattice
library(rpart)
library(ROSE)
## Loaded ROSE 0.0-3
library(ROCR)
## Loading required package: gplots
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
library(ipred)
library(plyr)
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following object is masked from 'package:lubridate':
##
## here
library(rpart.plot)
data<-read.csv('Data.csv', header=T, sep=",")
as.data.frame(names(data))
## names(data)
## 1 Customer_ID
## 2 Status_Checking_Acc
## 3 Duration_in_Months
## 4 Credit_History
## 5 Purposre_Credit_Taken
## 6 Credit_Amount
## 7 Savings_Acc
## 8 Years_At_Present_Employment
## 9 Inst_Rt_Income
## 10 Marital_Status_Gender
## 11 Other_Debtors_Guarantors
## 12 Current_Address_Yrs
## 13 Property
## 14 Age
## 15 Other_Inst_Plans
## 16 Housing
## 17 Num_CC
## 18 Job
## 19 Dependents
## 20 Telephone
## 21 Foreign_Worker
## 22 Default_On_Payment
## 23 Count
Reading the Data and transform the Default into a factor. Importing the stargazer library to get the Descriptive Statistics
as.data.frame(rapply(data,function(x)length(unique(x))))
## rapply(data, function(x) length(unique(x)))
## Customer_ID 5000
## Status_Checking_Acc 4
## Duration_in_Months 33
## Credit_History 5
## Purposre_Credit_Taken 10
## Credit_Amount 921
## Savings_Acc 5
## Years_At_Present_Employment 5
## Inst_Rt_Income 4
## Marital_Status_Gender 4
## Other_Debtors_Guarantors 3
## Current_Address_Yrs 4
## Property 4
## Age 53
## Other_Inst_Plans 3
## Housing 3
## Num_CC 4
## Job 4
## Dependents 2
## Telephone 2
## Foreign_Worker 2
## Default_On_Payment 2
## Count 1
data$Default_On_Payment=as.factor(data$Default_On_Payment)
levels(data$Default_On_Payment)<- c("not.defaulted", "defaulted")
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2015). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2. http://CRAN.R-project.org/package=stargazer
stargazer(data, type="text", title="Descriptive statistics", digits=1)
##
## Descriptive statistics
## ============================================================
## Statistic N Mean St. Dev. Min Max
## ------------------------------------------------------------
## Customer_ID 5,000 102,500.5 1,443.5 100,001 105,000
## Duration_in_Months 5,000 20.9 12.1 4 72
## Credit_Amount 5,000 3,271.3 2,821.6 250 18,424
## Inst_Rt_Income 5,000 3.0 1.1 1 4
## Current_Address_Yrs 5,000 2.8 1.1 1 4
## Age 5,000 35.5 11.4 19 75
## Num_CC 5,000 1.4 0.6 1 4
## Dependents 5,000 1.2 0.4 1 2
## Count 5,000 1.0 0.0 1 1
## ------------------------------------------------------------
Look for duplicates id
nrow(data)
## [1] 5000
length(unique(data$member_Customer_ID))
## [1] 0
Remove columns that have unique values
col_uv = sapply(data, function(x) length(unique(x)))
cat("Constant feature count:", length(col_uv[col_uv==1]))
## Constant feature count: 1
names(col_uv[col_uv==1])
## [1] "Count"
data = data[, !names(data) %in% names(col_uv[col_uv==1])]
Percentage of missing values per case
perc.miss.case<-sapply(data, function(col) sum(is.na(col))/nrow(data))
perc.miss.case
## Customer_ID Status_Checking_Acc
## 0 0
## Duration_in_Months Credit_History
## 0 0
## Purposre_Credit_Taken Credit_Amount
## 0 0
## Savings_Acc Years_At_Present_Employment
## 0 0
## Inst_Rt_Income Marital_Status_Gender
## 0 0
## Other_Debtors_Guarantors Current_Address_Yrs
## 0 0
## Property Age
## 0 0
## Other_Inst_Plans Housing
## 0 0
## Num_CC Job
## 0 0
## Dependents Telephone
## 0 0
## Foreign_Worker Default_On_Payment
## 0 0
data$Customer_ID<- NULL
class = sapply(data, class)
table(class)
## class
## factor integer
## 14 7
Recoding Variables from low to high scale. I want to capture this scale. This recoding is in accordance with the description of the variables.
# Recoding Variables
# Status_Checking_Acc
oldvaluesSCA <- c("A11", "A12", "A13", "A14")
newvaluesSCA <- factor(c("low", "medium", "high", "none" ))
data$Status_Checking_Acc <- newvaluesSCA[ match(data$Status_Checking_Acc, oldvaluesSCA)]
data$Status_Checking_Acc=as.factor(data$Status_Checking_Acc)
#Credit History
oldvaluesCH <- c("A30", "A31", "A32", "A33", "A34")
newvaluesCH <- factor(c("no/paid", "paid/bank", "paid/existing", "delayed/past", "existing/other" ))
data$Credit_History <- newvaluesCH[ match(data$Credit_History, oldvaluesCH)]
data$Credit_History=as.factor(data$Credit_History)
#Purposre_Credit_Taken
oldvaluesPCT <- c("A40", "A41", "A42", "A43", "A44", "A45", "A46", "A410", "A48", "A49")
newvaluesPCT <- factor(c("new/car", "used/car", "furniture/equipment", "radio/tv", "domestic/appliances", "repair", "education", "vacation", "retraining", "bussiness", "other"))
data$Purposre_Credit_Taken <- newvaluesPCT[ match(data$Purposre_Credit_Taken, oldvaluesPCT)]
data$Purposre_Credit_Taken=as.factor(data$Purposre_Credit_Taken)
# Savings Account
oldvaluesSA <- c("A61", "A62", "A63", "A64", "A65")
newvaluesSA <- factor(c("low", "minimal", "medium", "high", "none" ))
data$Savings_Acc <- newvaluesSA[ match(data$Savings_Acc, oldvaluesSA)]
data$Savings_Acc=as.factor(data$Savings_Acc)
# Years at present employer
oldvaluesYPE <- c("A71", "A72", "A73", "A74", "A75")
newvaluesYPE <- factor(c("unemploed", "less/year", "1to4", "4to7", "more/7" ))
data$Years_At_Present_Employment <- newvaluesYPE[ match(data$Years_At_Present_Employment, oldvaluesYPE)]
data$Years_At_Present_Employment=as.factor(data$Years_At_Present_Employment)
# Personal Status
oldvaluesPS <- c("A91", "A92", "A93", "A94")
newvaluesPS <- factor(c("male/divorce/sep", "female/divorced/sep/married", "male/single", "male/married/widowed"))
data$Marital_Status_Gender <- newvaluesPS[ match(data$Marital_Status_Gender, oldvaluesPS)]
data$Marital_Status_Gender=as.factor(data$Marital_Status_Gender)
# Other Debtors Guarantors
oldvaluesODG <- c("A101", "A102", "A103")
newvaluesODG <- factor(c("none", "co-applicant", "guarantor"))
data$Other_Debtors_Guarantors <- newvaluesODG[ match(data$Other_Debtors_Guarantors, oldvaluesODG)]
data$Other_Debtors_Guarantors=as.factor(data$Other_Debtors_Guarantors)
# Property
oldvaluesP <- c("A121", "A122", "A123", "A124")
newvaluesP <- factor(c("real/estate", "build/soc/lifeinsurance", "car/other", "no/property"))
data$Property <- newvaluesP[ match(data$Property, oldvaluesP)]
data$Property=as.factor(data$Property)
#Other Inst Plans
oldvaluesOIP<- c("A141", "A142", "A143")
newvaluesOIP <- factor(c("bank", "stores", "none"))
data$Other_Inst_Plans <- newvaluesOIP[ match(data$Other_Inst_Plans, oldvaluesOIP)]
data$Other_Inst_Plans=as.factor(data$Other_Inst_Plans)
# Housing
oldvaluesH <- c("A151", "A152", "A153")
newvaluesH <- factor(c("rent", "owned", "free"))
data$Housing<- newvaluesH[ match(data$Housing, oldvaluesH)]
data$Other_Inst_Plans=as.factor(data$Other_Inst_Plans)
# Jobs
oldvaluesJ <- c("A171", "A172", "A173", "A174")
newvaluesJ <- factor(c("unemployed/unskilled/non-resident", "unskilled/resident", "skilled/employee", "management/highly/qualified"))
data$Job <- newvaluesJ[ match(data$Job, oldvaluesJ)]
data$Job=as.factor(data$Job)
# Telephone
oldvaluesT <- c("A191", "A192")
newvaluesT<- factor(c("no", "yes"))
data$Telephone<- newvaluesT[ match(data$Telephone, oldvaluesT)]
data$Telephone=as.factor(data$Telephone)
# Foreign Worker
oldvaluesFW <- c("A201", "A202")
newvaluesFW<- factor(c("yes", "no"))
data$Foreign_Worker<- newvaluesFW[ match(data$Foreign_Worker, oldvaluesFW)]
data$Foreign_Worker=as.factor(data$Foreign_Worker)
Look again for missing values since maybe through recoding the NA has sneak into the data. Yet, I do not believe that I double check. Additionally, it is observed that we have interger and factor variables.
str(data)
## 'data.frame': 5000 obs. of 21 variables:
## $ Status_Checking_Acc : Factor w/ 4 levels "high","low","medium",..: 2 3 4 2 2 4 4 3 4 3 ...
## $ Duration_in_Months : int 6 48 12 42 24 36 24 36 12 30 ...
## $ Credit_History : Factor w/ 5 levels "delayed/past",..: 2 5 2 5 1 5 5 5 5 2 ...
## $ Purposre_Credit_Taken : Factor w/ 11 levels "bussiness","domestic/appliances",..: 7 7 3 4 5 3 4 10 7 5 ...
## $ Credit_Amount : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ Savings_Acc : Factor w/ 5 levels "high","low","medium",..: 5 2 2 2 2 5 3 2 1 2 ...
## $ Years_At_Present_Employment: Factor w/ 5 levels "1to4","4to7",..: 4 1 2 2 1 1 4 1 2 5 ...
## $ Inst_Rt_Income : int 4 2 2 2 3 2 3 2 2 4 ...
## $ Marital_Status_Gender : Factor w/ 4 levels "female/divorced/sep/married",..: 4 1 4 4 4 4 4 4 2 3 ...
## $ Other_Debtors_Guarantors : Factor w/ 3 levels "co-applicant",..: 3 3 3 2 3 3 3 3 3 3 ...
## $ Current_Address_Yrs : int 4 2 3 4 4 4 4 2 4 2 ...
## $ Property : Factor w/ 4 levels "build/soc/lifeinsurance",..: 4 4 4 1 3 3 1 2 4 2 ...
## $ Age : int 67 22 49 45 53 35 53 35 61 28 ...
## $ Other_Inst_Plans : Factor w/ 3 levels "bank","none",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ Housing : Factor w/ 3 levels "free","owned",..: 2 2 2 1 1 1 2 3 2 2 ...
## $ Num_CC : int 2 1 1 1 2 1 1 1 1 2 ...
## $ Job : Factor w/ 4 levels "management/highly/qualified",..: 2 2 4 2 2 4 2 1 4 1 ...
## $ Dependents : int 1 1 2 2 2 2 1 1 1 1 ...
## $ Telephone : Factor w/ 2 levels "no","yes": 2 1 1 1 1 2 1 2 1 1 ...
## $ Foreign_Worker : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
## $ Default_On_Payment : Factor w/ 2 levels "not.defaulted",..: 1 1 1 1 2 1 1 1 1 2 ...
perc.miss.case<-sapply(data, function(col) sum(is.na(col))/nrow(data))
perc.miss.case
## Status_Checking_Acc Duration_in_Months
## 0 0
## Credit_History Purposre_Credit_Taken
## 0 0
## Credit_Amount Savings_Acc
## 0 0
## Years_At_Present_Employment Inst_Rt_Income
## 0 0
## Marital_Status_Gender Other_Debtors_Guarantors
## 0 0
## Current_Address_Yrs Property
## 0 0
## Age Other_Inst_Plans
## 0 0
## Housing Num_CC
## 0 0
## Job Dependents
## 0 0
## Telephone Foreign_Worker
## 0 0
## Default_On_Payment
## 0
Training and test sets created stratified random sampling.
library(caret)
set.seed(22)
split1 <- createDataPartition(data$Default_On_Payment, p = .50)[[1]]
training <- data[split1,]
testing <- data[-split1,]
Checking for class imbalances. It is observed that we have a class imbalance, that we have 30 % versus 70 %. We have to apply some functions to balance the classes, otherwise the we gonna get bad performances.
prop.table(table(training$Default_On_Payment))
##
## not.defaulted defaulted
## 0.7009196 0.2990804
I have chosen to apply a smote function. There are more functions with the purpose of balancing the classes. e.g. rose, down, up. Yet, smote give me the best performance as I have tried it on this dataset. For now I am gonna apply the smote function for the sake of jumping to the next section.
library(DMwR)
## Loading required package: grid
##
## Attaching package: 'DMwR'
## The following object is masked from 'package:plyr':
##
## join
set.seed(2)
smote_train <- SMOTE(Default_On_Payment~., data = training, perc.over = 100, perc.under =200)
table(smote_train$Default_On_Payment) # we see now that we have the classes balanced.
##
## not.defaulted defaulted
## 1496 1496
Finally, the last stage of preprocessing is centering and scalling.
Centering and scaling.Determine a predictor set without highly sparse and unbalanced distribution. One important observation - all the transformations are applied only on the training datasets.
preProcValues <- preProcess(smote_train[, -21],
method = c("center", "scale", "YeoJohnson", "nzv"))
# Storing the transformed values into a new dataset called transformed.
transformed <- predict(preProcValues, newdata=training)
After preprocessing we get into the actual datascience task. Applying machine learning in order to get some patterns. Nevertheless we create some functions to get different performances. Accuracy, Sensitivity, Specificity, Kappa.
# Obtain different perfomances measures, two wrapper functions
# For Accuracy, Kappa, the area under the ROC curve,
# sensitivity and specificity
fiveStats <- function (...)c(twoClassSummary(...),
defaultSummary(...))
# Everything but the area under the ROC curv
fourStats <- function(data, lev=levels(data$obs), model =NULL)
{
accKapp <- postResample(data[, "pred"], data[, "obs"])
out<- c(accKapp,
sensitivity(data[,"pred"], data[,"obs"], lev[1]),
specificity(data[,"pred"], data[,"obs"], lev[2]))
names(out)[3:4] <- c("Sens", "Spec")
out
}
Creating a data frame to collect model’s performance. This is done for estethic purposes not that is necessary.
table_perf = data.frame(model=character(0),
auc=numeric(0),
accuracy=numeric(0),
sensitivity=numeric(0),
specificity=numeric(0),
kappa=numeric(0),
stringsAsFactors = FALSE)
A control function is developed
ctrl <- trainControl(method = "cv",
number = 10,
repeats = 4,
classProbs = TRUE,
summaryFunction = fiveStats,
verboseIter = TRUE,
allowParallel = TRUE)
I choose the same seed for the next models I have developed bellow.
set.seed(22)
rf.Fit <-train(Default_On_Payment~., data=transformed,
method = "rf",
trControl =ctrl,
ntree = 1500,
tuneLength= 5,
metric="ROC")
## Loading required package: randomForest
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
## combine
## The following object is masked from 'package:ggplot2':
##
## margin
## + Fold01: mtry= 2
## - Fold01: mtry= 2
## + Fold01: mtry=13
## - Fold01: mtry=13
## + Fold01: mtry=25
## - Fold01: mtry=25
## + Fold01: mtry=37
## - Fold01: mtry=37
## + Fold01: mtry=49
## - Fold01: mtry=49
## + Fold02: mtry= 2
## - Fold02: mtry= 2
## + Fold02: mtry=13
## - Fold02: mtry=13
## + Fold02: mtry=25
## - Fold02: mtry=25
## + Fold02: mtry=37
## - Fold02: mtry=37
## + Fold02: mtry=49
## - Fold02: mtry=49
## + Fold03: mtry= 2
## - Fold03: mtry= 2
## + Fold03: mtry=13
## - Fold03: mtry=13
## + Fold03: mtry=25
## - Fold03: mtry=25
## + Fold03: mtry=37
## - Fold03: mtry=37
## + Fold03: mtry=49
## - Fold03: mtry=49
## + Fold04: mtry= 2
## - Fold04: mtry= 2
## + Fold04: mtry=13
## - Fold04: mtry=13
## + Fold04: mtry=25
## - Fold04: mtry=25
## + Fold04: mtry=37
## - Fold04: mtry=37
## + Fold04: mtry=49
## - Fold04: mtry=49
## + Fold05: mtry= 2
## - Fold05: mtry= 2
## + Fold05: mtry=13
## - Fold05: mtry=13
## + Fold05: mtry=25
## - Fold05: mtry=25
## + Fold05: mtry=37
## - Fold05: mtry=37
## + Fold05: mtry=49
## - Fold05: mtry=49
## + Fold06: mtry= 2
## - Fold06: mtry= 2
## + Fold06: mtry=13
## - Fold06: mtry=13
## + Fold06: mtry=25
## - Fold06: mtry=25
## + Fold06: mtry=37
## - Fold06: mtry=37
## + Fold06: mtry=49
## - Fold06: mtry=49
## + Fold07: mtry= 2
## - Fold07: mtry= 2
## + Fold07: mtry=13
## - Fold07: mtry=13
## + Fold07: mtry=25
## - Fold07: mtry=25
## + Fold07: mtry=37
## - Fold07: mtry=37
## + Fold07: mtry=49
## - Fold07: mtry=49
## + Fold08: mtry= 2
## - Fold08: mtry= 2
## + Fold08: mtry=13
## - Fold08: mtry=13
## + Fold08: mtry=25
## - Fold08: mtry=25
## + Fold08: mtry=37
## - Fold08: mtry=37
## + Fold08: mtry=49
## - Fold08: mtry=49
## + Fold09: mtry= 2
## - Fold09: mtry= 2
## + Fold09: mtry=13
## - Fold09: mtry=13
## + Fold09: mtry=25
## - Fold09: mtry=25
## + Fold09: mtry=37
## - Fold09: mtry=37
## + Fold09: mtry=49
## - Fold09: mtry=49
## + Fold10: mtry= 2
## - Fold10: mtry= 2
## + Fold10: mtry=13
## - Fold10: mtry=13
## + Fold10: mtry=25
## - Fold10: mtry=25
## + Fold10: mtry=37
## - Fold10: mtry=37
## + Fold10: mtry=49
## - Fold10: mtry=49
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 13 on full training set
rf.Fit
## Random Forest
##
## 2501 samples
## 20 predictor
## 2 classes: 'not.defaulted', 'defaulted'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 2252, 2251, 2251, 2251, 2251, 2250, ...
## Resampling results across tuning parameters:
##
## mtry ROC Sens Spec Accuracy Kappa
## 2 0.9798237 0.9982857 0.5241081 0.8564553 0.6027554
## 13 0.9978379 0.9914318 0.9544505 0.9803951 0.9528488
## 25 0.9973407 0.9902890 0.9598198 0.9811951 0.9549345
## 37 0.9970937 0.9897175 0.9598198 0.9807951 0.9539933
## 49 0.9964526 0.9868701 0.9624865 0.9795999 0.9512452
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 13.
Variable Importance gives us the most important variables, the first 10, as I have chosen, in predicting the loan default. We see that Credit Amount, Duration in Months and Age, etc, are the predictors in predicting the loan default. In other words, these 10 variables are to be taken into account in assessing an individual on whether he will laon default.
rf.varImp <- varImp(rf.Fit)
plot(rf.varImp, 10)
Testing the predictions on test dataset. As it can be observed we got AUC is 81% with accuracy of 61 % which reveals a weak performance.
evalResults.RF <- predict(rf.Fit, testing, type="prob")[,1]
predict_rf = ifelse(evalResults.RF<0.5, "defaulted", "not.defaulted")
cmRF<- confusionMatrix(predict_rf, testing$Default_On_Payment, positive="defaulted")
## Warning in confusionMatrix.default(predict_rf, testing
## $Default_On_Payment, : Levels are not in the same order for reference and
## data. Refactoring data to match.
evalResults <- data.frame(Default_On_Payment=testing$Default_On_Payment)
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
rf.pROC <- pROC::roc(evalResults$Default_On_Payment, evalResults.RF)
auc_curve=auc(rf.pROC)
auc_curve
## Area under the curve: 0.8133
table_perf[1,] = c("Random Forest",
round(auc_curve,3),
as.numeric(round(cmRF$overall["Accuracy"],3)),
as.numeric(round(cmRF$byClass["Sensitivity"],3)),
as.numeric(round(cmRF$byClass["Specificity"],3)),
as.numeric(round(cmRF$overall["Kappa"],3)))
table_perf
## model auc accuracy sensitivity specificity kappa
## 1 Random Forest 0.813 0.625 0.94 0.49 0.324
Tuning the Random Forest model as the performances were weak.
set.seed(22)
mtryValues <- c(1,3,5,7,10)
rf.Fittuned <-train(Default_On_Payment~., data=transformed,
method = "rf",
trControl =ctrl,
ntree = 1500,
tuneGrid = data.frame(.mtry = mtryValues),
tuneLength= 5,
metric="ROC")
## + Fold01: mtry= 1
## - Fold01: mtry= 1
## + Fold01: mtry= 3
## - Fold01: mtry= 3
## + Fold01: mtry= 5
## - Fold01: mtry= 5
## + Fold01: mtry= 7
## - Fold01: mtry= 7
## + Fold01: mtry=10
## - Fold01: mtry=10
## + Fold02: mtry= 1
## - Fold02: mtry= 1
## + Fold02: mtry= 3
## - Fold02: mtry= 3
## + Fold02: mtry= 5
## - Fold02: mtry= 5
## + Fold02: mtry= 7
## - Fold02: mtry= 7
## + Fold02: mtry=10
## - Fold02: mtry=10
## + Fold03: mtry= 1
## - Fold03: mtry= 1
## + Fold03: mtry= 3
## - Fold03: mtry= 3
## + Fold03: mtry= 5
## - Fold03: mtry= 5
## + Fold03: mtry= 7
## - Fold03: mtry= 7
## + Fold03: mtry=10
## - Fold03: mtry=10
## + Fold04: mtry= 1
## - Fold04: mtry= 1
## + Fold04: mtry= 3
## - Fold04: mtry= 3
## + Fold04: mtry= 5
## - Fold04: mtry= 5
## + Fold04: mtry= 7
## - Fold04: mtry= 7
## + Fold04: mtry=10
## - Fold04: mtry=10
## + Fold05: mtry= 1
## - Fold05: mtry= 1
## + Fold05: mtry= 3
## - Fold05: mtry= 3
## + Fold05: mtry= 5
## - Fold05: mtry= 5
## + Fold05: mtry= 7
## - Fold05: mtry= 7
## + Fold05: mtry=10
## - Fold05: mtry=10
## + Fold06: mtry= 1
## - Fold06: mtry= 1
## + Fold06: mtry= 3
## - Fold06: mtry= 3
## + Fold06: mtry= 5
## - Fold06: mtry= 5
## + Fold06: mtry= 7
## - Fold06: mtry= 7
## + Fold06: mtry=10
## - Fold06: mtry=10
## + Fold07: mtry= 1
## - Fold07: mtry= 1
## + Fold07: mtry= 3
## - Fold07: mtry= 3
## + Fold07: mtry= 5
## - Fold07: mtry= 5
## + Fold07: mtry= 7
## - Fold07: mtry= 7
## + Fold07: mtry=10
## - Fold07: mtry=10
## + Fold08: mtry= 1
## - Fold08: mtry= 1
## + Fold08: mtry= 3
## - Fold08: mtry= 3
## + Fold08: mtry= 5
## - Fold08: mtry= 5
## + Fold08: mtry= 7
## - Fold08: mtry= 7
## + Fold08: mtry=10
## - Fold08: mtry=10
## + Fold09: mtry= 1
## - Fold09: mtry= 1
## + Fold09: mtry= 3
## - Fold09: mtry= 3
## + Fold09: mtry= 5
## - Fold09: mtry= 5
## + Fold09: mtry= 7
## - Fold09: mtry= 7
## + Fold09: mtry=10
## - Fold09: mtry=10
## + Fold10: mtry= 1
## - Fold10: mtry= 1
## + Fold10: mtry= 3
## - Fold10: mtry= 3
## + Fold10: mtry= 5
## - Fold10: mtry= 5
## + Fold10: mtry= 7
## - Fold10: mtry= 7
## + Fold10: mtry=10
## - Fold10: mtry=10
## Aggregating results
## Selecting tuning parameters
## Fitting mtry = 10 on full training set
rf.Fittuned
## Random Forest
##
## 2501 samples
## 20 predictor
## 2 classes: 'not.defaulted', 'defaulted'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 2252, 2251, 2251, 2251, 2251, 2250, ...
## Resampling results across tuning parameters:
##
## mtry ROC Sens Spec Accuracy Kappa
## 1 0.9092557 1.0000000 0.0000000 0.7009202 0.0000000
## 3 0.9944001 0.9942890 0.8302162 0.9452190 0.8627295
## 5 0.9976268 0.9948604 0.9451171 0.9800015 0.9515881
## 7 0.9979373 0.9937175 0.9504505 0.9807983 0.9536086
## 10 0.9979717 0.9914351 0.9531171 0.9799967 0.9518435
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 10.
Check the variables that are having impact on the model. Other words, I check what variable is having an impact on loan default. As I have already applied this function previosly, I am looking to see whether the same variables are impacting on the tuned model. Yes, the same variables are coming as important in whether an individual will default or not.
rf.varImpt <- varImp(rf.Fittuned)
plot(rf.varImpt, 10)
Test the results and calculating the ROC in order to get the Area Under Curve
evalResults.RFt <- predict(rf.Fittuned, testing, type="prob")[,1]
predict_rft = ifelse(evalResults.RFt<0.5, "defaulted", "not.defaulted")
cmRFt<- confusionMatrix(predict_rft, testing$Default_On_Payment, positive="defaulted")
## Warning in confusionMatrix.default(predict_rft, testing
## $Default_On_Payment, : Levels are not in the same order for reference and
## data. Refactoring data to match.
evalResults <- data.frame(Default_On_Payment=testing$Default_On_Payment)
library(pROC)
rf.pROCt <- pROC::roc(evalResults$Default_On_Payment, evalResults.RFt)
auc_curve=auc(rf.pROCt)
auc_curve
## Area under the curve: 0.8358
Storing the performances and checking the results. Was tuning the model a better idea? We can see that tuning the model has brought better result for all measurements.
table_perf[2,] = c("Random Forest Tuned",
round(auc_curve,3),
as.numeric(round(cmRFt$overall["Accuracy"],3)),
as.numeric(round(cmRFt$byClass["Sensitivity"],3)),
as.numeric(round(cmRFt$byClass["Specificity"],3)),
as.numeric(round(cmRFt$overall["Kappa"],3)))
table_perf
## model auc accuracy sensitivity specificity kappa
## 1 Random Forest 0.813 0.625 0.94 0.49 0.324
## 2 Random Forest Tuned 0.836 0.655 0.945 0.531 0.367
I apply Gradient Boosted and tuned it straight away just as I did at Random Forest.
C5.0.Grid <-expand.grid(interaction.depth = c(1,5,9),
n.trees = (1:30)*50,
shrinkage=0.1,
n.minosinnode =20)
set.seed(22)
C5.0.Fit <- train(Default_On_Payment~.,
data= transformed,
method= "C5.0",
tuneLength=30,
Grid =C5.0.Grid,
metric="ROC",
trControl = ctrl)
## Loading required package: C50
## + Fold01: model=tree, winnow=FALSE, trials=100
## - Fold01: model=tree, winnow=FALSE, trials=100
## + Fold01: model=tree, winnow= TRUE, trials=100
## - Fold01: model=tree, winnow= TRUE, trials=100
## + Fold01: model=rules, winnow=FALSE, trials=100
## - Fold01: model=rules, winnow=FALSE, trials=100
## + Fold01: model=rules, winnow= TRUE, trials=100
## - Fold01: model=rules, winnow= TRUE, trials=100
## + Fold02: model=tree, winnow=FALSE, trials=100
## - Fold02: model=tree, winnow=FALSE, trials=100
## + Fold02: model=tree, winnow= TRUE, trials=100
## - Fold02: model=tree, winnow= TRUE, trials=100
## + Fold02: model=rules, winnow=FALSE, trials=100
## - Fold02: model=rules, winnow=FALSE, trials=100
## + Fold02: model=rules, winnow= TRUE, trials=100
## - Fold02: model=rules, winnow= TRUE, trials=100
## + Fold03: model=tree, winnow=FALSE, trials=100
## - Fold03: model=tree, winnow=FALSE, trials=100
## + Fold03: model=tree, winnow= TRUE, trials=100
## - Fold03: model=tree, winnow= TRUE, trials=100
## + Fold03: model=rules, winnow=FALSE, trials=100
## - Fold03: model=rules, winnow=FALSE, trials=100
## + Fold03: model=rules, winnow= TRUE, trials=100
## - Fold03: model=rules, winnow= TRUE, trials=100
## + Fold04: model=tree, winnow=FALSE, trials=100
## - Fold04: model=tree, winnow=FALSE, trials=100
## + Fold04: model=tree, winnow= TRUE, trials=100
## - Fold04: model=tree, winnow= TRUE, trials=100
## + Fold04: model=rules, winnow=FALSE, trials=100
## - Fold04: model=rules, winnow=FALSE, trials=100
## + Fold04: model=rules, winnow= TRUE, trials=100
## - Fold04: model=rules, winnow= TRUE, trials=100
## + Fold05: model=tree, winnow=FALSE, trials=100
## - Fold05: model=tree, winnow=FALSE, trials=100
## + Fold05: model=tree, winnow= TRUE, trials=100
## - Fold05: model=tree, winnow= TRUE, trials=100
## + Fold05: model=rules, winnow=FALSE, trials=100
## - Fold05: model=rules, winnow=FALSE, trials=100
## + Fold05: model=rules, winnow= TRUE, trials=100
## - Fold05: model=rules, winnow= TRUE, trials=100
## + Fold06: model=tree, winnow=FALSE, trials=100
## - Fold06: model=tree, winnow=FALSE, trials=100
## + Fold06: model=tree, winnow= TRUE, trials=100
## - Fold06: model=tree, winnow= TRUE, trials=100
## + Fold06: model=rules, winnow=FALSE, trials=100
## - Fold06: model=rules, winnow=FALSE, trials=100
## + Fold06: model=rules, winnow= TRUE, trials=100
## - Fold06: model=rules, winnow= TRUE, trials=100
## + Fold07: model=tree, winnow=FALSE, trials=100
## - Fold07: model=tree, winnow=FALSE, trials=100
## + Fold07: model=tree, winnow= TRUE, trials=100
## - Fold07: model=tree, winnow= TRUE, trials=100
## + Fold07: model=rules, winnow=FALSE, trials=100
## - Fold07: model=rules, winnow=FALSE, trials=100
## + Fold07: model=rules, winnow= TRUE, trials=100
## - Fold07: model=rules, winnow= TRUE, trials=100
## + Fold08: model=tree, winnow=FALSE, trials=100
## - Fold08: model=tree, winnow=FALSE, trials=100
## + Fold08: model=tree, winnow= TRUE, trials=100
## - Fold08: model=tree, winnow= TRUE, trials=100
## + Fold08: model=rules, winnow=FALSE, trials=100
## - Fold08: model=rules, winnow=FALSE, trials=100
## + Fold08: model=rules, winnow= TRUE, trials=100
## - Fold08: model=rules, winnow= TRUE, trials=100
## + Fold09: model=tree, winnow=FALSE, trials=100
## - Fold09: model=tree, winnow=FALSE, trials=100
## + Fold09: model=tree, winnow= TRUE, trials=100
## - Fold09: model=tree, winnow= TRUE, trials=100
## + Fold09: model=rules, winnow=FALSE, trials=100
## - Fold09: model=rules, winnow=FALSE, trials=100
## + Fold09: model=rules, winnow= TRUE, trials=100
## - Fold09: model=rules, winnow= TRUE, trials=100
## + Fold10: model=tree, winnow=FALSE, trials=100
## - Fold10: model=tree, winnow=FALSE, trials=100
## + Fold10: model=tree, winnow= TRUE, trials=100
## - Fold10: model=tree, winnow= TRUE, trials=100
## + Fold10: model=rules, winnow=FALSE, trials=100
## - Fold10: model=rules, winnow=FALSE, trials=100
## + Fold10: model=rules, winnow= TRUE, trials=100
## - Fold10: model=rules, winnow= TRUE, trials=100
## Aggregating results
## Selecting tuning parameters
## Fitting trials = 100, model = rules, winnow = FALSE on full training set
C5.0.Fit
## C5.0
##
## 2501 samples
## 20 predictor
## 2 classes: 'not.defaulted', 'defaulted'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 2252, 2251, 2251, 2251, 2251, 2250, ...
## Resampling results across tuning parameters:
##
## model winnow trials ROC Sens Spec Accuracy
## rules FALSE 1 0.9037030 0.9372338 0.8168829 0.9012364
## rules FALSE 10 0.9922442 0.9834481 0.9665225 0.9784031
## rules FALSE 20 0.9963795 0.9851558 0.9691892 0.9803999
## rules FALSE 30 0.9965868 0.9868734 0.9678739 0.9811983
## rules FALSE 40 0.9966844 0.9868701 0.9692252 0.9816015
## rules FALSE 50 0.9968128 0.9874416 0.9692252 0.9820031
## rules FALSE 60 0.9969336 0.9868701 0.9692252 0.9816015
## rules FALSE 70 0.9969095 0.9868701 0.9665586 0.9808015
## rules FALSE 80 0.9967720 0.9868701 0.9638559 0.9799983
## rules FALSE 90 0.9970621 0.9874416 0.9638559 0.9803999
## rules FALSE 100 0.9971843 0.9868701 0.9651892 0.9803983
## rules TRUE 1 0.8901632 0.9446786 0.8048468 0.9028540
## rules TRUE 10 0.9921599 0.9845942 0.9625586 0.9780063
## rules TRUE 20 0.9954819 0.9857305 0.9678739 0.9804015
## rules TRUE 30 0.9961717 0.9868766 0.9679099 0.9812047
## rules TRUE 40 0.9957803 0.9863084 0.9732793 0.9824047
## rules TRUE 50 0.9965184 0.9863052 0.9692432 0.9812015
## rules TRUE 60 0.9966695 0.9868734 0.9678919 0.9811999
## rules TRUE 70 0.9967013 0.9880130 0.9665225 0.9815967
## rules TRUE 80 0.9969523 0.9868701 0.9678559 0.9811951
## rules TRUE 90 0.9968452 0.9874416 0.9665045 0.9811951
## rules TRUE 100 0.9969681 0.9874416 0.9665225 0.9811967
## tree FALSE 1 0.9449244 0.9332435 0.7994955 0.8932396
## tree FALSE 10 0.9940218 0.9885844 0.9544865 0.9783935
## tree FALSE 20 0.9950953 0.9885877 0.9518018 0.9775983
## tree FALSE 30 0.9959870 0.9897273 0.9558018 0.9795967
## tree FALSE 40 0.9960810 0.9902955 0.9571532 0.9803983
## tree FALSE 50 0.9962704 0.9902922 0.9598378 0.9811983
## tree FALSE 60 0.9966688 0.9885844 0.9612072 0.9804047
## tree FALSE 70 0.9967302 0.9891526 0.9612072 0.9808031
## tree FALSE 80 0.9968743 0.9902955 0.9625586 0.9820031
## tree FALSE 90 0.9968204 0.9897240 0.9612072 0.9812031
## tree FALSE 100 0.9967423 0.9902955 0.9625586 0.9820031
## tree TRUE 1 0.9388215 0.9446851 0.8115315 0.9048620
## tree TRUE 10 0.9932946 0.9851591 0.9545225 0.9759983
## tree TRUE 20 0.9954474 0.9880097 0.9612072 0.9799983
## tree TRUE 30 0.9967905 0.9902955 0.9625225 0.9819999
## tree TRUE 40 0.9968686 0.9908636 0.9624865 0.9823951
## tree TRUE 50 0.9964540 0.9908636 0.9611532 0.9819951
## tree TRUE 60 0.9964079 0.9897240 0.9598018 0.9807935
## tree TRUE 70 0.9964465 0.9897240 0.9611532 0.9811951
## tree TRUE 80 0.9961713 0.9902955 0.9625225 0.9819999
## tree TRUE 90 0.9963999 0.9902955 0.9625225 0.9819999
## tree TRUE 100 0.9965376 0.9891526 0.9638559 0.9815983
## Kappa
## 0.7610429
## 0.9486241
## 0.9533082
## 0.9551759
## 0.9561359
## 0.9570996
## 0.9561495
## 0.9542080
## 0.9522408
## 0.9531906
## 0.9531965
## 0.7634879
## 0.9474698
## 0.9532943
## 0.9551353
## 0.9581282
## 0.9552261
## 0.9551793
## 0.9560477
## 0.9551547
## 0.9550891
## 0.9551062
## 0.7411864
## 0.9480619
## 0.9461199
## 0.9510083
## 0.9529150
## 0.9549390
## 0.9530794
## 0.9540486
## 0.9569116
## 0.9549971
## 0.9569116
## 0.7687778
## 0.9426168
## 0.9523114
## 0.9568977
## 0.9578095
## 0.9568238
## 0.9539231
## 0.9549267
## 0.9568617
## 0.9568617
## 0.9559767
##
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were trials = 100, model = rules
## and winnow = FALSE.
Looking the the variables that show importance in whether an individual will or not default. Here the Age, Income, Purpose, Existing Credit History, Duration in Months, Credit Amount, etc have all equal importance in whether a person will default or not.Actually, all variables have almost 100 % importance.
varImpC5.O <- varImp(C5.0.Fit)
plot(varImpC5.O, 20)
evalResults.C5.0 <- predict(C5.0.Fit, testing, type="prob")[,1]
predict.C5.0 = ifelse(evalResults.C5.0<0.5, "defaulted", "not.defaulted")
cm.C5.0<- confusionMatrix(predict.C5.0, testing$Default_On_Payment, positive="defaulted")
## Warning in confusionMatrix.default(predict.C5.0, testing
## $Default_On_Payment, : Levels are not in the same order for reference and
## data. Refactoring data to match.
evalResults<- data.frame(Default_On_Payment=testing$Default_On_Payment)
library(pROC)
C5.O.pROC <- pROC::roc(evalResults$Default_On_Payment, evalResults.C5.0)
auc_curve=auc(C5.O.pROC)
auc_curve
## Area under the curve: 0.8239
Checking the performances obtained in the Cubist model against the other models developed above. Random Forest(tuned) does well compared to Cubist model
table_perf[3,] = c("C5.0 - Cubist",
round(auc_curve,3),
as.numeric(round(cm.C5.0$overall["Accuracy"],3)),
as.numeric(round(cm.C5.0$byClass["Sensitivity"],3)),
as.numeric(round(cm.C5.0$byClass["Specificity"],3)),
as.numeric(round(cm.C5.0$overall["Kappa"],3)))
table_perf
## model auc accuracy sensitivity specificity kappa
## 1 Random Forest 0.813 0.625 0.94 0.49 0.324
## 2 Random Forest Tuned 0.836 0.655 0.945 0.531 0.367
## 3 C5.0 - Cubist 0.824 0.543 0.976 0.359 0.235
At this phase I am not looking anymore for the varImp since I have already looked for it in the pref
set.seed(22)
xgbGrid <- expand.grid(
eta = 0.12,
max_depth = 10,
nrounds = 400,
gamma = 0, #default=0
colsample_bytree = 1, #default=1
min_child_weight = 1 #default=1
)
XGBoost.Fit <- train(Default_On_Payment ~.,
data= transformed,
method= "xgbTree",
metric="ROC",
#tuneGrid = xgbGrid, does not work ...
trControl = ctrl,
nthread = 3)
## Loading required package: xgboost
##
## Attaching package: 'xgboost'
## The following object is masked from 'package:dplyr':
##
## slice
## + Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold01: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold02: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold03: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold04: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold05: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold06: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold07: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold08: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold09: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.3, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.3, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.3, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.4, max_depth=1, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.4, max_depth=2, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.6, min_child_weight=1, subsample=1.00, nrounds=150
## + Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## - Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.50, nrounds=150
## + Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## - Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=150
## + Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## - Fold10: eta=0.4, max_depth=3, gamma=0, colsample_bytree=0.8, min_child_weight=1, subsample=1.00, nrounds=150
## Aggregating results
## Selecting tuning parameters
## Fitting nrounds = 150, max_depth = 3, eta = 0.4, gamma = 0, colsample_bytree = 0.8, min_child_weight = 1, subsample = 0.75 on full training set
XGBoost.Fit
## eXtreme Gradient Boosting
##
## 2501 samples
## 20 predictor
## 2 classes: 'not.defaulted', 'defaulted'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 2252, 2251, 2251, 2251, 2251, 2250, ...
## Resampling results across tuning parameters:
##
## eta max_depth colsample_bytree subsample nrounds ROC
## 0.3 1 0.6 0.50 50 0.8162735
## 0.3 1 0.6 0.50 100 0.8255710
## 0.3 1 0.6 0.50 150 0.8313237
## 0.3 1 0.6 0.75 50 0.8142198
## 0.3 1 0.6 0.75 100 0.8253597
## 0.3 1 0.6 0.75 150 0.8323904
## 0.3 1 0.6 1.00 50 0.8126662
## 0.3 1 0.6 1.00 100 0.8229252
## 0.3 1 0.6 1.00 150 0.8288032
## 0.3 1 0.8 0.50 50 0.8220723
## 0.3 1 0.8 0.50 100 0.8329816
## 0.3 1 0.8 0.50 150 0.8368980
## 0.3 1 0.8 0.75 50 0.8207133
## 0.3 1 0.8 0.75 100 0.8320828
## 0.3 1 0.8 0.75 150 0.8392645
## 0.3 1 0.8 1.00 50 0.8177333
## 0.3 1 0.8 1.00 100 0.8303128
## 0.3 1 0.8 1.00 150 0.8363783
## 0.3 2 0.6 0.50 50 0.8597175
## 0.3 2 0.6 0.50 100 0.8846756
## 0.3 2 0.6 0.50 150 0.8937315
## 0.3 2 0.6 0.75 50 0.8575276
## 0.3 2 0.6 0.75 100 0.8866862
## 0.3 2 0.6 0.75 150 0.9023021
## 0.3 2 0.6 1.00 50 0.8607914
## 0.3 2 0.6 1.00 100 0.8844233
## 0.3 2 0.6 1.00 150 0.9017572
## 0.3 2 0.8 0.50 50 0.8733231
## 0.3 2 0.8 0.50 100 0.9008841
## 0.3 2 0.8 0.50 150 0.9126863
## 0.3 2 0.8 0.75 50 0.8792442
## 0.3 2 0.8 0.75 100 0.9028741
## 0.3 2 0.8 0.75 150 0.9222327
## 0.3 2 0.8 1.00 50 0.8762755
## 0.3 2 0.8 1.00 100 0.9044330
## 0.3 2 0.8 1.00 150 0.9229366
## 0.3 3 0.6 0.50 50 0.8975407
## 0.3 3 0.6 0.50 100 0.9289865
## 0.3 3 0.6 0.50 150 0.9506948
## 0.3 3 0.6 0.75 50 0.9073413
## 0.3 3 0.6 0.75 100 0.9408423
## 0.3 3 0.6 0.75 150 0.9565309
## 0.3 3 0.6 1.00 50 0.9042032
## 0.3 3 0.6 1.00 100 0.9382318
## 0.3 3 0.6 1.00 150 0.9557961
## 0.3 3 0.8 0.50 50 0.9162504
## 0.3 3 0.8 0.50 100 0.9505528
## 0.3 3 0.8 0.50 150 0.9712812
## 0.3 3 0.8 0.75 50 0.9213983
## 0.3 3 0.8 0.75 100 0.9588099
## 0.3 3 0.8 0.75 150 0.9774452
## 0.3 3 0.8 1.00 50 0.9226837
## 0.3 3 0.8 1.00 100 0.9572918
## 0.3 3 0.8 1.00 150 0.9738224
## 0.4 1 0.6 0.50 50 0.8181156
## 0.4 1 0.6 0.50 100 0.8305062
## 0.4 1 0.6 0.50 150 0.8380444
## 0.4 1 0.6 0.75 50 0.8152383
## 0.4 1 0.6 0.75 100 0.8302985
## 0.4 1 0.6 0.75 150 0.8365599
## 0.4 1 0.6 1.00 50 0.8172747
## 0.4 1 0.6 1.00 100 0.8282699
## 0.4 1 0.6 1.00 150 0.8342253
## 0.4 1 0.8 0.50 50 0.8232586
## 0.4 1 0.8 0.50 100 0.8375255
## 0.4 1 0.8 0.50 150 0.8435258
## 0.4 1 0.8 0.75 50 0.8253171
## 0.4 1 0.8 0.75 100 0.8344996
## 0.4 1 0.8 0.75 150 0.8396134
## 0.4 1 0.8 1.00 50 0.8236766
## 0.4 1 0.8 1.00 100 0.8340386
## 0.4 1 0.8 1.00 150 0.8399601
## 0.4 2 0.6 0.50 50 0.8595011
## 0.4 2 0.6 0.50 100 0.8881532
## 0.4 2 0.6 0.50 150 0.9015981
## 0.4 2 0.6 0.75 50 0.8706540
## 0.4 2 0.6 0.75 100 0.8968622
## 0.4 2 0.6 0.75 150 0.9116721
## 0.4 2 0.6 1.00 50 0.8693652
## 0.4 2 0.6 1.00 100 0.8975353
## 0.4 2 0.6 1.00 150 0.9133924
## 0.4 2 0.8 0.50 50 0.8778073
## 0.4 2 0.8 0.50 100 0.9083313
## 0.4 2 0.8 0.50 150 0.9277480
## 0.4 2 0.8 0.75 50 0.8874756
## 0.4 2 0.8 0.75 100 0.9183952
## 0.4 2 0.8 0.75 150 0.9342203
## 0.4 2 0.8 1.00 50 0.8874614
## 0.4 2 0.8 1.00 100 0.9173615
## 0.4 2 0.8 1.00 150 0.9358262
## 0.4 3 0.6 0.50 50 0.9078750
## 0.4 3 0.6 0.50 100 0.9383488
## 0.4 3 0.6 0.50 150 0.9568401
## 0.4 3 0.6 0.75 50 0.9137737
## 0.4 3 0.6 0.75 100 0.9451539
## 0.4 3 0.6 0.75 150 0.9656784
## 0.4 3 0.6 1.00 50 0.9175095
## 0.4 3 0.6 1.00 100 0.9496776
## 0.4 3 0.6 1.00 150 0.9661978
## 0.4 3 0.8 0.50 50 0.9252495
## 0.4 3 0.8 0.50 100 0.9602025
## 0.4 3 0.8 0.50 150 0.9767378
## 0.4 3 0.8 0.75 50 0.9389844
## 0.4 3 0.8 0.75 100 0.9708239
## 0.4 3 0.8 0.75 150 0.9838921
## 0.4 3 0.8 1.00 50 0.9422685
## 0.4 3 0.8 1.00 100 0.9712028
## 0.4 3 0.8 1.00 150 0.9823343
## Sens Spec Accuracy Kappa
## 0.8984610 0.4625946 0.7680933 0.3944539
## 0.8967338 0.5281802 0.7864919 0.4542845
## 0.8910097 0.5321441 0.7836807 0.4504249
## 0.9104286 0.4198198 0.7637093 0.3694137
## 0.8938766 0.5268288 0.7840982 0.4496760
## 0.8950227 0.5415495 0.7893015 0.4648920
## 0.9167110 0.4010811 0.7624996 0.3594728
## 0.8978799 0.4893874 0.7757029 0.4196130
## 0.8961623 0.5201441 0.7837014 0.4465077
## 0.9144091 0.4519459 0.7761030 0.4056785
## 0.8915942 0.5374414 0.7857014 0.4565591
## 0.8915909 0.5495495 0.7892999 0.4670371
## 0.9115649 0.4305405 0.7676981 0.3814853
## 0.8990162 0.5200721 0.7856998 0.4500289
## 0.8961558 0.5494775 0.7924934 0.4733328
## 0.9224123 0.4144865 0.7704917 0.3804449
## 0.9041591 0.5026847 0.7840934 0.4407978
## 0.9007370 0.5214595 0.7873046 0.4537760
## 0.9081396 0.5709189 0.8072856 0.5101116
## 0.9138214 0.6176577 0.8252824 0.5601460
## 0.9246688 0.6497477 0.8424585 0.6041450
## 0.9058506 0.5616396 0.8028999 0.4985179
## 0.9161136 0.6377297 0.8328761 0.5810806
## 0.9252403 0.7072613 0.8600618 0.6539806
## 0.9155519 0.5601802 0.8092855 0.5109596
## 0.9235422 0.6097117 0.8296792 0.5675427
## 0.9286688 0.6738919 0.8524682 0.6311861
## 0.9144156 0.5829369 0.8152808 0.5296124
## 0.9286688 0.6725225 0.8520554 0.6295567
## 0.9263864 0.7072252 0.8608570 0.6559881
## 0.9183929 0.5883604 0.8196776 0.5408679
## 0.9218214 0.6711892 0.8468586 0.6179538
## 0.9332273 0.7260721 0.8712555 0.6814389
## 0.9223994 0.5722883 0.8176712 0.5318751
## 0.9258279 0.6645225 0.8476762 0.6185201
## 0.9366591 0.6979099 0.8652506 0.6631007
## 0.9241104 0.6617297 0.8456633 0.6137343
## 0.9417922 0.7486847 0.8840364 0.7138636
## 0.9509253 0.7900901 0.9028252 0.7613059
## 0.9309610 0.6897477 0.8588554 0.6486838
## 0.9452370 0.7860901 0.8976444 0.7496953
## 0.9537857 0.8301982 0.9168365 0.7980766
## 0.9275227 0.6683784 0.8500554 0.6248812
## 0.9434968 0.7566486 0.8876348 0.7231942
## 0.9572078 0.8034414 0.9112348 0.7821896
## 0.9332370 0.6925405 0.8612474 0.6525724
## 0.9543506 0.7740721 0.9004284 0.7532976
## 0.9697532 0.8462703 0.9328269 0.8355553
## 0.9349513 0.7259820 0.8724475 0.6832830
## 0.9560552 0.8035135 0.9104301 0.7796177
## 0.9731786 0.8502162 0.9364142 0.8442036
## 0.9343766 0.7005766 0.8644475 0.6619282
## 0.9589286 0.8061622 0.9132396 0.7865994
## 0.9726169 0.8515856 0.9364222 0.8443200
## 0.8984416 0.5000000 0.7792982 0.4307873
## 0.8893117 0.5361261 0.7836903 0.4523083
## 0.8938669 0.5548468 0.7924855 0.4754824
## 0.8995779 0.4692973 0.7708965 0.4027251
## 0.8864513 0.5414414 0.7832903 0.4531335
## 0.8915779 0.5575315 0.7916807 0.4749083
## 0.9024610 0.4399279 0.7641109 0.3776794
## 0.8984481 0.5161261 0.7841030 0.4456457
## 0.8944545 0.5334955 0.7864998 0.4566920
## 0.9012922 0.5066306 0.7832774 0.4406194
## 0.8858734 0.5574414 0.7876839 0.4665084
## 0.8847403 0.5735676 0.7916871 0.4800446
## 0.9018604 0.4747027 0.7740950 0.4112481
## 0.8955909 0.5281081 0.7856950 0.4525971
## 0.8904448 0.5602162 0.7916887 0.4753464
## 0.9115682 0.4492072 0.7732950 0.4001165
## 0.8955974 0.5134054 0.7812982 0.4387590
## 0.8978734 0.5321622 0.7884934 0.4594807
## 0.9041494 0.5962523 0.8120919 0.5271777
## 0.9218442 0.6592432 0.8432729 0.6078379
## 0.9269805 0.6898919 0.8560602 0.6409561
## 0.9126981 0.6096757 0.8220776 0.5514320
## 0.9252370 0.6711532 0.8492617 0.6238576
## 0.9235227 0.7099099 0.8596554 0.6541113
## 0.9092760 0.5829550 0.8116840 0.5230426
## 0.9275455 0.6805225 0.8536746 0.6357567
## 0.9292500 0.7086126 0.8632666 0.6615571
## 0.9161071 0.6203423 0.8276601 0.5661506
## 0.9292468 0.6952973 0.8592586 0.6496962
## 0.9400909 0.7353874 0.8788555 0.6996905
## 0.9155617 0.6177658 0.8264920 0.5628026
## 0.9298182 0.7006847 0.8612650 0.6555956
## 0.9355357 0.7568108 0.8820635 0.7104308
## 0.9235422 0.6190450 0.8324744 0.5754507
## 0.9383766 0.7113333 0.8704555 0.6773109
## 0.9480844 0.7554234 0.8904476 0.7286512
## 0.9252403 0.6885225 0.8544570 0.6384458
## 0.9372338 0.7768108 0.8892476 0.7296228
## 0.9583539 0.8169009 0.9160477 0.7943156
## 0.9332370 0.7179820 0.8688555 0.6757565
## 0.9440747 0.7914054 0.8984396 0.7520907
## 0.9566266 0.8462342 0.9236269 0.8150026
## 0.9366656 0.7071712 0.8680442 0.6710535
## 0.9480714 0.7887207 0.9004364 0.7562176
## 0.9634805 0.8368829 0.9256205 0.8183841
## 0.9321006 0.7487748 0.8772555 0.6984771
## 0.9657630 0.8275676 0.9244333 0.8141294
## 0.9760292 0.8769369 0.9464174 0.8694917
## 0.9457987 0.7420721 0.8848555 0.7139845
## 0.9640552 0.8342342 0.9252349 0.8173782
## 0.9828766 0.8983063 0.9576190 0.8968602
## 0.9492078 0.7607568 0.8928380 0.7348107
## 0.9686104 0.8342162 0.9284237 0.8242955
## 0.9823084 0.8943063 0.9560158 0.8928779
##
## Tuning parameter 'gamma' was held constant at a value of 0
##
## Tuning parameter 'min_child_weight' was held constant at a value of 1
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were nrounds = 150, max_depth = 3,
## eta = 0.4, gamma = 0, colsample_bytree = 0.8, min_child_weight = 1
## and subsample = 0.75.
Testing the results on the test data.
evalResults.XGB <- predict(XGBoost.Fit, testing, type="prob")[,1]
predict.xgb = ifelse(evalResults.XGB <0.5, "defaulted", "not.defaulted")
cm.XGB<- confusionMatrix(predict.xgb, testing$Default_On_Payment, positive="defaulted")
## Warning in confusionMatrix.default(predict.xgb, testing
## $Default_On_Payment, : Levels are not in the same order for reference and
## data. Refactoring data to match.
evalResults <- data.frame(Default_On_Payment=testing$Default_On_Payment)
library(pROC)
xgb.pROC <- pROC::roc(evalResults$Default_On_Payment, evalResults.XGB)
auc_curve=auc(xgb.pROC)
auc_curve
## Area under the curve: 0.7258
Taking into account xgBoost model as well, and compared to all the other, Random Forest again performs better.
table_perf[4,] = c("XGBOOST I",
round(auc_curve,3),
as.numeric(round(cm.XGB$overall["Accuracy"],3)),
as.numeric(round(cm.XGB$byClass["Sensitivity"],3)),
as.numeric(round(cm.XGB$byClass["Specificity"],3)),
as.numeric(round(cm.XGB$overall["Kappa"],3)))
table_perf
## model auc accuracy sensitivity specificity kappa
## 1 Random Forest 0.813 0.625 0.94 0.49 0.324
## 2 Random Forest Tuned 0.836 0.655 0.945 0.531 0.367
## 3 C5.0 - Cubist 0.824 0.543 0.976 0.359 0.235
## 4 XGBOOST I 0.726 0.582 0.827 0.477 0.234
The problem I seek to solve is to determine the individuals who do default yet I do not want to get someone who may default into the category of no default.Then I look for the best thresholds (applying the function “best”) and see whether specificity has improved. Yet, this is at the cost of Sensitivity.
In this example, I choose to plot the default thresholds which is .5 and the best thresholds for Random Forest as this has brought the best model amongst the ones I have developed. We can see that the .3 threshold improved my Sensitivity. Interesting is to see that Random Forest, with the .5 threshold has indentified well the no default, yet not really well those who defaulted. Yet, the best threshold has balanced the gap between sensitivity and specificity.
plot(rf.pROC,legacy.axes = TRUE, print.thres= .5)
plot(rf.pROC,legacy.axes = TRUE, print.thres="best",col = "orange", add=TRUE)
In Conclusion, among the four models developed, after Preprocessing has been achieved, the best model was given by Random Forest. Yet, a decision making with the data provided cannot be taken. Performances weren’t great. Accuracy of the model hardly passed 65 %. Therefore, adding more data is needed. Using the best threshold, we also looked for the individuals who default as well as those who do not default. We apply this function since we do not want those who default wrongly categorised (as no default). With varImp function we have found those variables which seem to be the most important in predictions of the loan default.