data <- read.csv(file.choose())
mod.int <- aov( y ~ X_A*X_B + X_A*X_C + X_B*X_C, data)
summary(mod.int)
## Df Sum Sq Mean Sq F value Pr(>F)
## X_A 1 1485.1 1485.1 4.568 0.279
## X_B 1 703.1 703.1 2.163 0.380
## X_C 1 1485.1 1485.1 4.568 0.279
## X_A:X_B 1 136.1 136.1 0.419 0.634
## X_A:X_C 1 10.1 10.1 0.031 0.889
## X_B:X_C 1 6.1 6.1 0.019 0.913
## Residuals 1 325.1 325.1
mod.additive <- aov( y ~ X_A+X_B+X_C, data)
summary(mod.additive)
## Df Sum Sq Mean Sq F value Pr(>F)
## X_A 1 1485.1 1485.1 12.44 0.0243 *
## X_B 1 703.1 703.1 5.89 0.0722 .
## X_C 1 1485.1 1485.1 12.44 0.0243 *
## Residuals 4 477.5 119.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
data$X_ABC = data$X_A*data$X_B*data$X_C
data.1.frac <- data[data$X_ABC == 1, ]
library(gplots)
## Warning: package 'gplots' was built under R version 3.4.3
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
plotmeans( y ~ X_A, data.1.frac)

plotmeans( y ~ X_B, data.1.frac)

plotmeans( y ~ X_C, data.1.frac)

mod.additive <- aov(y ~ X_A + X_B + X_C, data.1.frac)
summary(mod.additive)
## Df Sum Sq Mean Sq
## X_A 1 650.2 650.2
## X_B 1 272.2 272.2
## X_C 1 1260.3 1260.3
mod.additive <- aov(y ~ X_A + X_C, data.1.frac)
summary(mod.additive)
## Df Sum Sq Mean Sq F value Pr(>F)
## X_A 1 650.2 650.2 2.388 0.366
## X_C 1 1260.3 1260.3 4.629 0.277
## Residuals 1 272.2 272.2