load data set
library(foreign)
affairs<-read.dta("http://fmwww.bc.edu/ec-p/data/wooldridge/affairs.dta")
Generate “Factors” to attach labels
haskids <- factor(affairs$kids,labels=c("no","yes"))
mlab <- c("very unhappy",
"somewhat unhappy",
"average",
"happier than avg",
"very happy")
marriage <- factor(affairs$ratemarr, labels=mlab)
Frequencies for having kids:
haskids
no yes
171 430
Marriage ratings (share):
prop.table(table(marriage))
marriage
very unhappy somewhat unhappy average
0.0266223 0.1098170 0.1547421
happier than avg very happy
0.3227953 0.3860233
Contigency table: counts (display & store in var.)
(countstab <- table(marriage,haskids))
haskids
marriage no yes
very unhappy 3 13
somewhat unhappy 8 58
average 24 69
happier than avg 40 154
very happy 96 136
Share within “marriage” (i.e. within a row):
prop.table(countstab, margin=1)
haskids
marriage no yes
very unhappy 0.1875000 0.8125000
somewhat unhappy 0.1212121 0.8787879
average 0.2580645 0.7419355
happier than avg 0.2061856 0.7938144
very happy 0.4137931 0.5862069
Share within “haskids” (i.e. within a column):
prop.table(countstab, margin=2)
haskids
marriage no yes
very unhappy 0.01754386 0.03023256
somewhat unhappy 0.04678363 0.13488372
average 0.14035088 0.16046512
happier than avg 0.23391813 0.35813953
very happy 0.56140351 0.31627907
LS0tCnRpdGxlOiAiRGVzY3ItVGFibGVzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIGxvYWQgZGF0YSBzZXQKCmBgYHtyIHJlbWVkeTAwMX0KbGlicmFyeShmb3JlaWduKQphZmZhaXJzPC1yZWFkLmR0YSgiaHR0cDovL2Ztd3d3LmJjLmVkdS9lYy1wL2RhdGEvd29vbGRyaWRnZS9hZmZhaXJzLmR0YSIpCgpgYGAKCiMgR2VuZXJhdGUgIkZhY3RvcnMiIHRvIGF0dGFjaCBsYWJlbHMKCmBgYHtyIHJlbWVkeTAwMn0KCmhhc2tpZHMgPC0gZmFjdG9yKGFmZmFpcnMka2lkcyxsYWJlbHM9Yygibm8iLCJ5ZXMiKSkKbWxhYiA8LSBjKCJ2ZXJ5IHVuaGFwcHkiLAogICAgICAgICAgInNvbWV3aGF0IHVuaGFwcHkiLAogICAgICAgICAgImF2ZXJhZ2UiLAogICAgICAgICAgImhhcHBpZXIgdGhhbiBhdmciLAogICAgICAgICAgInZlcnkgaGFwcHkiKQptYXJyaWFnZSA8LSBmYWN0b3IoYWZmYWlycyRyYXRlbWFyciwgbGFiZWxzPW1sYWIpCgpgYGAKCiMgRnJlcXVlbmNpZXMgZm9yIGhhdmluZyBraWRzOgoKYGBge3IgcmVtZWR5MDAzfQoKdGFibGUoaGFza2lkcykKCmBgYAoKIyBNYXJyaWFnZSByYXRpbmdzIChzaGFyZSk6CgpgYGB7ciByZW1lZHkwMDR9Cgpwcm9wLnRhYmxlKHRhYmxlKG1hcnJpYWdlKSkKCmBgYAoKIyBDb250aWdlbmN5IHRhYmxlOiBjb3VudHMgKGRpc3BsYXkgJiBzdG9yZSBpbiB2YXIuKQoKYGBge3IgcmVtZWR5MDA1fQoKKGNvdW50c3RhYiA8LSB0YWJsZShtYXJyaWFnZSxoYXNraWRzKSkKCmBgYAoKIyBTaGFyZSB3aXRoaW4gIm1hcnJpYWdlIiAoaS5lLiB3aXRoaW4gYSByb3cpOgoKYGBge3IgcmVtZWR5MDA2fQoKcHJvcC50YWJsZShjb3VudHN0YWIsIG1hcmdpbj0xKQoKYGBgCgojIFNoYXJlIHdpdGhpbiAiaGFza2lkcyIgIChpLmUuIHdpdGhpbiBhIGNvbHVtbik6CgpgYGB7ciByZW1lZHkwMDd9Cgpwcm9wLnRhYmxlKGNvdW50c3RhYiwgbWFyZ2luPTIpCgpgYGAK