Introduction

This report presents the data analysis done on the NOAA Storm database. The analysis was done mainly to answer two questions: 1. Across the United States, which types of events (as indicated in the 𝙴𝚅𝚃𝚈𝙿𝙴 variable) are most harmful with respect to population health? 2. Across the United States, which types of events have the greatest economic consequences?

Data Processing

Loading the data.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data<-read.csv('storm.csv.bz2')
names(data)<-tolower(names(data))
head(data)
##   state__           bgn_date bgn_time time_zone county countyname state
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    evtype bgn_range bgn_azi bgn_locati end_date end_time county_end
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   countyendn end_range end_azi end_locati length width f mag fatalities
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   injuries propdmg propdmgexp cropdmg cropdmgexp wfo stateoffic zonenames
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   latitude longitude latitude_e longitude_ remarks refnum
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6

Pre-processing the data

In this section, the net property and crop damages have been calculated in billions USD. Following that, data has been aggregated based on the event type. This means that we have found the fatalities, injuries, net crop damage and net property damage for each type of event from the year 1950 to 2010. Then top 10 events in each of these categories have been chosen.

data<-select(data,evtype,fatalities,injuries,propdmg,propdmgexp,cropdmg,cropdmgexp)
cropdmgexp<-as.character(unique(data$cropdmgexp))
cropexp<- c(1,6,3,6,9,1,0,3,2)
cropexpdt<-data.frame(cbind(cropdmgexp,cropexp))
cropexpdt$cropexp<-as.numeric(cropexpdt$cropexp)
data<-merge(data,cropexpdt,by = 'cropdmgexp')
data$cropdmgnet<- ((data$cropdmg * 10^data$cropexp)/10^9)
propdmgexp<-as.character(unique(data$propdmgexp))
propexp<-c(3,6,1,9,6,0,0,5,6,0,4,2,3,2,7,2,0,1,8)
propexpdt<-data.frame(cbind(propdmgexp,propexp))
propexpdt$propexp<-as.numeric(propexpdt$propexp)
data<-merge(data,propexpdt,by='propdmgexp')
data$propdmgnet<-(data$propdmg * 10^data$propexp)/10^10
data<-select(data,evtype,fatalities,injuries,cropdmgnet,propdmgnet)
pophlth<-aggregate(cbind(fatalities,injuries)~evtype,data,sum)
economic<-aggregate(cbind(cropdmgnet,propdmgnet)~evtype,data,sum)
pophlth$net<-pophlth$fatalities + pophlth$injuries
economic$net<-economic$cropdmgnet + economic$propdmgnet
pophlth<-arrange(pophlth,desc(net))
pophlth10<-pophlth[1:10,]
pophlth_f<-arrange(pophlth,desc(fatalities))
pophlth_f10<-pophlth_f[1:10,]
pophlth_i<-arrange(pophlth,desc(injuries))
pophlth_i10<-pophlth_i[1:10,]
economic<-arrange(economic,desc(net))
economic10<-economic[1:10,]
economic_p<-arrange(economic,desc(propdmgnet))
economic_p10<-economic_p[1:10,]
economic_c<-arrange(economic,desc(cropdmgnet))
economic_c10<-economic_c[1:10,]

Results

Effect on Population Health

par(mfrow = c(1,3), mar = c(12,4,5,2))
barplot(pophlth10$net,names.arg = pophlth10$evtype,ylim = c(0,100000),las = 3, main = 'Net Effect on Population Health',ylab = 'Fatalities + Injuries')
barplot(pophlth_f10$fatalities, las = 3,names.arg = pophlth_f10$evtype,ylim = c(0,7000), main = 'Deaths due to Event',ylab = 'Number of Deaths')
barplot(pophlth_i10$injuries,names.arg = pophlth_i10$evtype,  las = 3,ylim = c(0,100000), main = 'Injuries due to Event', ylab = 'Number of Injuries')

maxph<-pophlth10[1,4]

As observed in the figures above, the most destructive events on the basis of effect on population health is unequivocally tornadoes. They cause a total of 96979 injuries and deaths in USA. Other major destructive events are Excessive Heat, Floods, TSTM Winds, and Lightning.

Economic consequences of events

par(mfrow = c(1,3), mar = c(12,4,5,2))
barplot(economic10$net,las =3,names.arg = economic10$evtype,ylim = c(0,160),main = 'Net Economic Consequences',ylab = 'Net Damage (Crop + Property) in Billions USD')
barplot(economic_c10$cropdmgnet,las=3,names.arg = economic_c10$evtype, ylab = 'Damage to crops (in Billions USD)', main = 'Crop damage due to Event')
barplot(economic_p10$propdmgnet,las=3,names.arg = economic_p10$evtype, ylim = c(0,160),main = 'Property damage due to Event',ylab = 'Damage to property (in Billions USD)')

maxec<-floor(economic10[1,4])

As observed in the figures above, the most destructive events on the basis of economic consequences are floods causing approximately 146 billions US dollars worth of damages. Other major destructive events in this category are Hurricane/Typhoon, Tornado, Hail and Flash Floods.