1. Use the summary function to gain an overview of the data set. Then display the mean and median for at least two attributes.
csv <- RCurl::getURL("https://raw.githubusercontent.com/baroncurtin2/bridgeworkshop/master/College.csv")
data <- read.csv(textConnection(csv))

summary(data)
##                             X       Private        Apps      
##  Abilene Christian University:  1   No :212   Min.   :   81  
##  Adelphi University          :  1   Yes:565   1st Qu.:  776  
##  Adrian College              :  1             Median : 1558  
##  Agnes Scott College         :  1             Mean   : 3002  
##  Alaska Pacific University   :  1             3rd Qu.: 3624  
##  Albertson College           :  1             Max.   :48094  
##  (Other)                     :771                            
##      Accept          Enroll       Top10perc       Top25perc    
##  Min.   :   72   Min.   :  35   Min.   : 1.00   Min.   :  9.0  
##  1st Qu.:  604   1st Qu.: 242   1st Qu.:15.00   1st Qu.: 41.0  
##  Median : 1110   Median : 434   Median :23.00   Median : 54.0  
##  Mean   : 2019   Mean   : 780   Mean   :27.56   Mean   : 55.8  
##  3rd Qu.: 2424   3rd Qu.: 902   3rd Qu.:35.00   3rd Qu.: 69.0  
##  Max.   :26330   Max.   :6392   Max.   :96.00   Max.   :100.0  
##                                                                
##   F.Undergrad     P.Undergrad         Outstate       Room.Board  
##  Min.   :  139   Min.   :    1.0   Min.   : 2340   Min.   :1780  
##  1st Qu.:  992   1st Qu.:   95.0   1st Qu.: 7320   1st Qu.:3597  
##  Median : 1707   Median :  353.0   Median : 9990   Median :4200  
##  Mean   : 3700   Mean   :  855.3   Mean   :10441   Mean   :4358  
##  3rd Qu.: 4005   3rd Qu.:  967.0   3rd Qu.:12925   3rd Qu.:5050  
##  Max.   :31643   Max.   :21836.0   Max.   :21700   Max.   :8124  
##                                                                  
##      Books           Personal         PhD            Terminal    
##  Min.   :  96.0   Min.   : 250   Min.   :  8.00   Min.   : 24.0  
##  1st Qu.: 470.0   1st Qu.: 850   1st Qu.: 62.00   1st Qu.: 71.0  
##  Median : 500.0   Median :1200   Median : 75.00   Median : 82.0  
##  Mean   : 549.4   Mean   :1341   Mean   : 72.66   Mean   : 79.7  
##  3rd Qu.: 600.0   3rd Qu.:1700   3rd Qu.: 85.00   3rd Qu.: 92.0  
##  Max.   :2340.0   Max.   :6800   Max.   :103.00   Max.   :100.0  
##                                                                  
##    S.F.Ratio      perc.alumni        Expend        Grad.Rate     
##  Min.   : 2.50   Min.   : 0.00   Min.   : 3186   Min.   : 10.00  
##  1st Qu.:11.50   1st Qu.:13.00   1st Qu.: 6751   1st Qu.: 53.00  
##  Median :13.60   Median :21.00   Median : 8377   Median : 65.00  
##  Mean   :14.09   Mean   :22.74   Mean   : 9660   Mean   : 65.46  
##  3rd Qu.:16.50   3rd Qu.:31.00   3rd Qu.:10830   3rd Qu.: 78.00  
##  Max.   :39.80   Max.   :64.00   Max.   :56233   Max.   :118.00  
## 
mean(data$Apps)
## [1] 3001.638
mean(data$Accept)
## [1] 2018.804
median(data$Apps)
## [1] 1558
median(data$Accept)
## [1] 1110
  1. Create a new data frame with a subset of the columns and rows. Make sure to rename it.
collegeData <- data.frame(data, stringsAsFactors = FALSE)
collegeData[] <- lapply(collegeData, as.character)
  1. Create new column names for the new data frame.
colnames(collegeData) <- c("Name", "Private_Flag", "Applications", "Accepted", "Enrollees", "Top10", "Top25", "FullTime_Undergrad", "PartTime_Undergrad", "OutOfState_Tution", "Room.Board_Costs", "Book_Costs", "Personal_Spend", "Faculty_PHDperc", "Terminal_Degreeperc", "Faculty_Ratio", "AlumniDonation_perc", "InstructionalExpense", "GraduationRate")
  1. Use the summary function to create an overview of your new data frame. The print the mean and median for the same two attributes. Please compare.
summary(collegeData)
##      Name           Private_Flag       Applications      
##  Length:777         Length:777         Length:777        
##  Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character  
##    Accepted          Enrollees            Top10          
##  Length:777         Length:777         Length:777        
##  Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character  
##     Top25           FullTime_Undergrad PartTime_Undergrad
##  Length:777         Length:777         Length:777        
##  Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character  
##  OutOfState_Tution  Room.Board_Costs    Book_Costs       
##  Length:777         Length:777         Length:777        
##  Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character  
##  Personal_Spend     Faculty_PHDperc    Terminal_Degreeperc
##  Length:777         Length:777         Length:777         
##  Class :character   Class :character   Class :character   
##  Mode  :character   Mode  :character   Mode  :character   
##  Faculty_Ratio      AlumniDonation_perc InstructionalExpense
##  Length:777         Length:777          Length:777          
##  Class :character   Class :character    Class :character    
##  Mode  :character   Mode  :character    Mode  :character    
##  GraduationRate    
##  Length:777        
##  Class :character  
##  Mode  :character
mean(collegeData$Apps)
## Warning in mean.default(collegeData$Apps): argument is not numeric or
## logical: returning NA
## [1] NA
mean(collegeData$Accept)
## Warning in mean.default(collegeData$Accept): argument is not numeric or
## logical: returning NA
## [1] NA
median(collegeData$Apps)
## Warning in is.na(x): is.na() applied to non-(list or vector) of type 'NULL'
## NULL
median(collegeData$Accept)
## [1] "3446"
  1. For at least 3 values in a column please rename so that every value in that column is renamed. For example, suppose I have 20 values of the letter “e” in one column. Rename those values so that all 20 would show as “excellent”.
collegeData$Private_Flag[collegeData$Private_Flag == "Yes"] <- 1
collegeData$Private_Flag[collegeData$Private_Flag == "No"] <- 0
collegeData$GraduationRate[collegeData$GraduationRate == 100] <- 1
  1. Display enough rows to see examples of all of steps 1-5 above.
head(collegeData, 20)
##                                       Name Private_Flag Applications
## 1             Abilene Christian University            1         1660
## 2                       Adelphi University            1         2186
## 3                           Adrian College            1         1428
## 4                      Agnes Scott College            1          417
## 5                Alaska Pacific University            1          193
## 6                        Albertson College            1          587
## 7                  Albertus Magnus College            1          353
## 8                           Albion College            1         1899
## 9                         Albright College            1         1038
## 10               Alderson-Broaddus College            1          582
## 11                       Alfred University            1         1732
## 12                       Allegheny College            1         2652
## 13 Allentown Coll. of St. Francis de Sales            1         1179
## 14                            Alma College            1         1267
## 15                         Alverno College            1          494
## 16          American International College            1         1420
## 17                         Amherst College            1         4302
## 18                     Anderson University            1         1216
## 19                      Andrews University            1         1130
## 20                 Angelo State University            0         3540
##    Accepted Enrollees Top10 Top25 FullTime_Undergrad PartTime_Undergrad
## 1      1232       721    23    52               2885                537
## 2      1924       512    16    29               2683               1227
## 3      1097       336    22    50               1036                 99
## 4       349       137    60    89                510                 63
## 5       146        55    16    44                249                869
## 6       479       158    38    62                678                 41
## 7       340       103    17    45                416                230
## 8      1720       489    37    68               1594                 32
## 9       839       227    30    63                973                306
## 10      498       172    21    44                799                 78
## 11     1425       472    37    75               1830                110
## 12     1900       484    44    77               1707                 44
## 13      780       290    38    64               1130                638
## 14     1080       385    44    73               1306                 28
## 15      313       157    23    46               1317               1235
## 16     1093       220     9    22               1018                287
## 17      992       418    83    96               1593                  5
## 18      908       423    19    40               1819                281
## 19      704       322    14    23               1586                326
## 20     2001      1016    24    54               4190               1512
##    OutOfState_Tution Room.Board_Costs Book_Costs Personal_Spend
## 1               7440             3300        450           2200
## 2              12280             6450        750           1500
## 3              11250             3750        400           1165
## 4              12960             5450        450            875
## 5               7560             4120        800           1500
## 6              13500             3335        500            675
## 7              13290             5720        500           1500
## 8              13868             4826        450            850
## 9              15595             4400        300            500
## 10             10468             3380        660           1800
## 11             16548             5406        500            600
## 12             17080             4440        400            600
## 13              9690             4785        600           1000
## 14             12572             4552        400            400
## 15              8352             3640        650           2449
## 16              8700             4780        450           1400
## 17             19760             5300        660           1598
## 18             10100             3520        550           1100
## 19              9996             3090        900           1320
## 20              5130             3592        500           2000
##    Faculty_PHDperc Terminal_Degreeperc Faculty_Ratio AlumniDonation_perc
## 1               70                  78          18.1                  12
## 2               29                  30          12.2                  16
## 3               53                  66          12.9                  30
## 4               92                  97           7.7                  37
## 5               76                  72          11.9                   2
## 6               67                  73           9.4                  11
## 7               90                  93          11.5                  26
## 8               89                 100          13.7                  37
## 9               79                  84          11.3                  23
## 10              40                  41          11.5                  15
## 11              82                  88          11.3                  31
## 12              73                  91           9.9                  41
## 13              60                  84          13.3                  21
## 14              79                  87          15.3                  32
## 15              36                  69          11.1                  26
## 16              78                  84          14.7                  19
## 17              93                  98           8.4                  63
## 18              48                  61          12.1                  14
## 19              62                  66          11.5                  18
## 20              60                  62          23.1                   5
##    InstructionalExpense GraduationRate
## 1                  7041             60
## 2                 10527             56
## 3                  8735             54
## 4                 19016             59
## 5                 10922             15
## 6                  9727             55
## 7                  8861             63
## 8                 11487             73
## 9                 11644             80
## 10                 8991             52
## 11                10932             73
## 12                11711             76
## 13                 7940             74
## 14                 9305             68
## 15                 8127             55
## 16                 7355             69
## 17                21424              1
## 18                 7994             59
## 19                10908             46
## 20                 4010             34