[Dataset] (https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/datasets/mtcars.csv)
mt.cars <- read.csv("mtcars.csv")
print(summary(mt.cars))
## X mpg cyl disp
## AMC Javelin : 1 Min. :10.40 Min. :4.000 Min. : 71.1
## Cadillac Fleetwood: 1 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8
## Camaro Z28 : 1 Median :19.20 Median :6.000 Median :196.3
## Chrysler Imperial : 1 Mean :20.09 Mean :6.188 Mean :230.7
## Datsun 710 : 1 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0
## Dodge Challenger : 1 Max. :33.90 Max. :8.000 Max. :472.0
## (Other) :26
## hp drat wt qsec
## Min. : 52.0 Min. :2.760 Min. :1.513 Min. :14.50
## 1st Qu.: 96.5 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89
## Median :123.0 Median :3.695 Median :3.325 Median :17.71
## Mean :146.7 Mean :3.597 Mean :3.217 Mean :17.85
## 3rd Qu.:180.0 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90
## Max. :335.0 Max. :4.930 Max. :5.424 Max. :22.90
##
## vs am gear carb
## Min. :0.0000 Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4375 Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :1.0000 Max. :5.000 Max. :8.000
##
meanMpg <- mean(mt.cars$mpg, na.rm = TRUE)
print(meanMpg)
## [1] 20.09062
medianMpg <- median(mt.cars$mpg, na.rm = TRUE)
print(medianMpg)
## [1] 19.2
meanDisp <- mean(mt.cars$disp, na.rm = TRUE)
print(meanDisp)
## [1] 230.7219
medianDisp <- median(mt.cars$disp, na.rm = TRUE)
print(medianDisp)
## [1] 196.3
meanHp <- mean(mt.cars$hp, na.rm = TRUE)
print(meanHp)
## [1] 146.6875
medianHp <- median(mt.cars$hp, na.rm = TRUE)
print(medianHp)
## [1] 123
#install.packages("stringr")
require(stringr)
mercCars <- mt.cars[str_detect(mt.cars$X, "Merc"), c("X", "vs", "am", "gear", "carb")]
print(mercCars)
## X vs am gear carb
## 8 Merc 240D 1 0 4 2
## 9 Merc 230 1 0 4 2
## 10 Merc 280 1 0 4 4
## 11 Merc 280C 1 0 4 4
## 12 Merc 450SE 0 0 3 3
## 13 Merc 450SL 0 0 3 3
## 14 Merc 450SLC 0 0 3 3
colnames(mercCars) <- c("model", "_vs", "_am", "_gear", "_carb")
print(mercCars)
## model _vs _am _gear _carb
## 8 Merc 240D 1 0 4 2
## 9 Merc 230 1 0 4 2
## 10 Merc 280 1 0 4 4
## 11 Merc 280C 1 0 4 4
## 12 Merc 450SE 0 0 3 3
## 13 Merc 450SL 0 0 3 3
## 14 Merc 450SLC 0 0 3 3
summary(mercCars)
## model _vs _am _gear _carb
## Merc 230 :1 Min. :0.0000 Min. :0 Min. :3.000 Min. :2.0
## Merc 240D :1 1st Qu.:0.0000 1st Qu.:0 1st Qu.:3.000 1st Qu.:2.5
## Merc 280 :1 Median :1.0000 Median :0 Median :4.000 Median :3.0
## Merc 280C :1 Mean :0.5714 Mean :0 Mean :3.571 Mean :3.0
## Merc 450SE:1 3rd Qu.:1.0000 3rd Qu.:0 3rd Qu.:4.000 3rd Qu.:3.5
## Merc 450SL:1 Max. :1.0000 Max. :0 Max. :4.000 Max. :4.0
## (Other) :1
meanGear <- mean(mercCars$'_gear', na.rm = TRUE)
print(meanGear)
## [1] 3.571429
medianGear <- median(mercCars$'_gear', na.rm = TRUE)
print(medianGear)
## [1] 4
meanCarb <- mean(mercCars$'_carb', na.rm = TRUE)
print(meanCarb)
## [1] 3
medianCarb <- median(mercCars$'_carb', na.rm = TRUE)
print(medianCarb)
## [1] 3
mercCars$'_carb' <- gsub("2", "20", as.character(mercCars$'_carb'))
mercCars$'_carb' <- gsub("3", "30", as.character(mercCars$'_carb'))
mercCars$'_carb' <- gsub("4", "40", as.character(mercCars$'_carb'))
print(mercCars)
## model _vs _am _gear _carb
## 8 Merc 240D 1 0 4 20
## 9 Merc 230 1 0 4 20
## 10 Merc 280 1 0 4 40
## 11 Merc 280C 1 0 4 40
## 12 Merc 450SE 0 0 3 30
## 13 Merc 450SL 0 0 3 30
## 14 Merc 450SLC 0 0 3 30
#install.packages("RCurl")
library(RCurl)
gitHubUrl <- getURL("https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/datasets/mtcars.csv")
mtCars <- read.csv(text = gitHubUrl)
print(head(mtCars))
## X mpg cyl disp hp drat wt qsec vs am gear carb
## 1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## 2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## 3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## 4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## 5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## 6 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1