Outline
General findings
df.sedpit <- read.csv("https://raw.githubusercontent.com/APECS-ak/APECS-master-repos/master/ALL_DATA/seagrass_seaotter_pit_sediment_2017_CLEAN.csv", stringsAsFactors = FALSE, header = TRUE)
df.bio <- read.csv("https://raw.githubusercontent.com/APECS-ak/APECS-master-repos/master/ALL_DATA/seagrass_biometrics_CLEAN.csv", stringsAsFactors = FALSE, header = TRUE)
df.trans <- read.csv("https://raw.githubusercontent.com/APECS-ak/APECS-master-repos/master/ALL_DATA/seagrass_transect_2017_RAW.csv", stringsAsFactors = FALSE, header = TRUE)
df.coords <- read.csv("https://raw.githubusercontent.com/APECS-ak/APECS-master-repos/master/ALL_DATA/sites_coordinates.csv", stringsAsFactors = FALSE, header = TRUE)
df.soi <- read.csv("https://raw.githubusercontent.com/APECS-ak/APECS-master-repos/master/ALL_DATA/sea_otter_impact_index_2017_new.csv", stringsAsFactors = FALSE, header = TRUE)
df.sedpit —> df.sedpit2 (sediment + pit data sumed/averaged across transects within a site)
df.sedpit —> df.sedpit_trans (reshapes sed + pit data to conserve transect structure within site)
df.transect –> df.transect2 (all mean site/transect data)
df.bio –> df.bio2 (all mean biometric data seagrass)
df.bio –> df.mass_area (calculates mean masses per area data)
df.soi: extracts sea otter index values
df.all <- left_join(df.coords, df.trans2, by = c("site"))
df.all <- left_join(df.all, df.sedpit2, by = c("site"))
df.all <- left_join(df.all, df.sedpit_trans, by = c("site"))
df.all <- left_join(df.all, df.bio2, by = c("site"))
df.all <- left_join(df.all, df.mass_area, by = c("site"))
df.all <- left_join(df.all, df.soi, by = c("site"))
We want to manipulate df.all in the following ways:
Here are the column names in the final df.all:
## [1] "site" "site_name"
## [3] "latitude" "longitude"
## [5] "date" "julian_day"
## [7] "depth_m" "so_index"
## [9] "pits_in" "pits_edge"
## [11] "pits_out" "pits_tot_site"
## [13] "sed1_in" "sed1_edge"
## [15] "sed1_out" "sed2_in"
## [17] "sed2_edge" "sed2_out"
## [19] "sedmean_in" "sedmean_edge"
## [21] "sedmean_out" "sed1_site"
## [23] "sed2_site" "sedmean_site"
## [25] "macroalgae_percent_cover" "epiphyte_percent_cover"
## [27] "epiphyte_mass_perplant" "epi_mass_shootmass_g.g"
## [29] "epi_mass_leafarea_mg.cm2" "flower_density_m2"
## [31] "shoot_mass_perplant" "shoot_density_m2"
## [33] "shoot_mass_m2" "leaf_length_mean"
## [35] "leaf_length_max" "leaf_width_mean"
## [37] "leaf_width_max" "leaf_area_blade"
## [39] "leaf_area_plant" "rhi_mass_percm"
## [41] "rhi_mass_percm_m2" "shoot_mass_m2_sd"
## [43] "rhi_mass_percm_m2_sd"
| Numeric Ordinal ID | Adjective ID |
|---|---|
| 1 | Mud |
| 2 | Sandy mud |
| 3 | Muddy sand |
| 4 | Sand |
| 5 | Coarse sand |
| 6 | Pebble |
| 7 | Gravel |
| 8 | Cobble |
| 9 | Boulder |
| 10 | Reef |
There are a lot of possible plots using df.all. Tiff looked at the regressions for all of those plots but only includes results for regressions that look significant, or might with either transformation or non-linear regression.
5A. Epiphytes per gram of seagrass