setwd("~/Documents/Dropbox/Research/Don")
r<-read.csv ("JMR_algorithms_new_performance_rigidity.csv", header=T, sep=",")
Testing for Interaction between objectivity and rigidity manipulation
r$recept<-(r$r1 + r$r2 + (8-r$r3R) + (8-r$r4R))/4
r$rigid[r$rigid==1]<-"rigid"
r$rigid[r$notrigid==1]<-"notrigid"
long <- reshape(r,
varying = c("car_1", "joke_1", "cancer_1", "movie_1", "psych_1", "parole_1", "gpa_1", "job_1"),
v.names = "trust",
timevar = "task",
times = c("car_1", "joke_1", "cancer_1", "movie_1", "psych_1", "parole_1", "A_gpa_1", "job_1"),
direction = "long")
#taking objectivity ratings from previous study.
long$obj[long$task=="car_1"]<-69
long$obj[long$task=="joke_1"]<-27
long$obj[long$task=="cancer_1"]<-69
long$obj[long$task=="movie_1"]<-23
long$obj[long$task=="psych_1"]<-77
long$obj[long$task=="parole_1"]<-45
long$obj[long$task=="A_gpa_1"]<-52
long$obj[long$task=="job_1"]<-51
#this is binary measure of objectivity
long$obj2[long$obj>50]<-"obj"
long$obj2[long$obj<50]<-"subj"
summary(aov(trust ~ obj * rigid, long))
## Df Sum Sq Mean Sq F value Pr(>F)
## obj 1 5523 5523 5.328 0.0211 *
## rigid 1 1 1 0.001 0.9735
## obj:rigid 1 1780 1780 1.717 0.1902
## Residuals 1732 1795216 1036
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1496 observations deleted due to missingness
summary(aov(trust ~ obj2 * rigid, long))
## Df Sum Sq Mean Sq F value Pr(>F)
## obj2 1 13122 13122 12.708 0.000374 ***
## rigid 1 1 1 0.001 0.973478
## obj2:rigid 1 980 980 0.949 0.330010
## Residuals 1732 1788416 1033
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1496 observations deleted due to missingness
Interaction between rigidness manipulation and performance manipulation? Also just looking at main effects, no interaction term.
r$rigid[r$rigid==1]<-"rigid"
r$rigid[r$notrigid==1]<-"notrigid"
personality <- reshape(r,
varying = c("personality_1","Q56_1"),
v.names = "personality",
timevar = "performance",
times = c("yes","no"),
direction = "long")
summary(lm(personality ~ rigid * performance, personality))
##
## Call:
## lm(formula = personality ~ rigid * performance, data = personality)
##
## Residuals:
## Min 1Q Median 3Q Max
## -73.64 -20.00 7.36 22.47 40.00
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 73.640 2.924 25.186 <2e-16 ***
## rigidrigid -8.180 4.287 -1.908 0.0571 .
## performanceyes -8.106 4.105 -1.975 0.0490 *
## rigidrigid:performanceyes 2.646 5.846 0.453 0.6510
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29.24 on 400 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.02838, Adjusted R-squared: 0.02109
## F-statistic: 3.894 on 3 and 400 DF, p-value: 0.009179
summary(lm(personality ~ rigid + performance, personality))
##
## Call:
## lm(formula = personality ~ rigid + performance, data = personality)
##
## Residuals:
## Min 1Q Median 3Q Max
## -72.978 -19.419 8.022 22.022 40.581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 72.978 2.529 28.852 <2e-16 ***
## rigidrigid -6.757 2.912 -2.321 0.0208 *
## performanceyes -6.801 2.920 -2.329 0.0203 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 29.21 on 401 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.02788, Adjusted R-squared: 0.02303
## F-statistic: 5.751 on 2 and 401 DF, p-value: 0.003449
car <- reshape(r,
varying = c("car_1","Q57_1"),
v.names = "car",
timevar = "performance",
times = c("yes","no"),
direction = "long")
summary(lm(car ~ rigid * performance, car))
##
## Call:
## lm(formula = car ~ rigid * performance, data = car)
##
## Residuals:
## Min 1Q Median 3Q Max
## -73.793 -30.331 8.444 26.375 53.307
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65.420 3.482 18.787 < 2e-16 ***
## rigidrigid 8.373 5.105 1.640 0.10177
## performanceyes -15.119 4.889 -3.093 0.00212 **
## rigidrigid:performanceyes -11.981 6.962 -1.721 0.08604 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34.82 on 400 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.08985, Adjusted R-squared: 0.08303
## F-statistic: 13.16 on 3 and 400 DF, p-value: 3.261e-08
summary(lm(car ~ rigid + performance, car))
##
## Call:
## lm(formula = car ~ rigid + performance, data = car)
##
## Residuals:
## Min 1Q Median 3Q Max
## -70.35 -30.32 9.63 29.65 52.61
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 68.417 3.023 22.635 < 2e-16 ***
## rigidrigid 1.931 3.480 0.555 0.579
## performanceyes -21.026 3.489 -6.026 3.81e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34.91 on 401 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.08311, Adjusted R-squared: 0.07854
## F-statistic: 18.18 on 2 and 401 DF, p-value: 2.781e-08
joke <- reshape(r,
varying = c("joke_1","Q58_1"),
v.names = "trust",
timevar = "performance",
times = c("yes","no"),
direction = "long")
summary(lm(trust ~ rigid * performance, joke))
##
## Call:
## lm(formula = trust ~ rigid * performance, data = joke)
##
## Residuals:
## Min 1Q Median 3Q Max
## -76.620 -13.675 7.325 19.057 37.757
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 76.620 2.642 29.004 < 2e-16 ***
## rigidrigid 4.323 3.873 1.116 0.265054
## performanceyes -14.377 3.709 -3.877 0.000124 ***
## rigidrigid:performanceyes -1.890 5.282 -0.358 0.720678
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 26.42 on 400 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.07954, Adjusted R-squared: 0.07264
## F-statistic: 11.52 on 3 and 400 DF, p-value: 2.928e-07
summary(lm(trust ~ rigid + performance, joke))
##
## Call:
## lm(formula = trust ~ rigid + performance, data = joke)
##
## Residuals:
## Min 1Q Median 3Q Max
## -77.09 -14.09 6.91 19.60 38.22
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 77.093 2.285 33.738 < 2e-16 ***
## rigidrigid 3.306 2.630 1.257 0.209
## performanceyes -15.309 2.638 -5.804 1.32e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 26.39 on 401 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.07925, Adjusted R-squared: 0.07466
## F-statistic: 17.26 on 2 and 401 DF, p-value: 6.462e-08
cancer <- reshape(r,
varying = c("cancer_1","Q59_1"),
v.names = "trust",
timevar = "performance",
times = c("yes","no"),
direction = "long")
summary(lm(trust ~ rigid * performance, cancer))
##
## Call:
## lm(formula = trust ~ rigid * performance, data = cancer)
##
## Residuals:
## Min 1Q Median 3Q Max
## -68.598 -28.598 0.665 28.589 59.096
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 62.580 3.220 19.435 < 2e-16 ***
## rigidrigid 6.018 4.721 1.275 0.203
## performanceyes -17.813 4.520 -3.941 9.59e-05 ***
## rigidrigid:performanceyes -9.881 6.438 -1.535 0.126
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.2 on 400 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.1152, Adjusted R-squared: 0.1086
## F-statistic: 17.36 on 3 and 400 DF, p-value: 1.297e-10
summary(lm(trust ~ rigid + performance, cancer))
##
## Call:
## lm(formula = trust ~ rigid + performance, data = cancer)
##
## Residuals:
## Min 1Q Median 3Q Max
## -65.756 -27.367 0.781 28.415 57.633
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65.0518 2.7929 23.292 < 2e-16 ***
## rigidrigid 0.7047 3.2151 0.219 0.827
## performanceyes -22.6847 3.2240 -7.036 8.6e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.25 on 401 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.11, Adjusted R-squared: 0.1055
## F-statistic: 24.77 on 2 and 401 DF, p-value: 7.163e-11
movie <- reshape(r,
varying = c("movie_1","Q60_1"),
v.names = "trust",
timevar = "performance",
times = c("yes","no"),
direction = "long")
summary(lm(trust ~ rigid * performance, movie))
##
## Call:
## lm(formula = trust ~ rigid * performance, data = movie)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.724 -26.724 4.835 25.700 54.835
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.300 3.087 19.212 <2e-16 ***
## rigidrigid 7.424 4.525 1.641 0.1017
## performanceyes -14.135 4.333 -3.262 0.0012 **
## rigidrigid:performanceyes -4.826 6.171 -0.782 0.4347
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.87 on 400 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.07155, Adjusted R-squared: 0.06458
## F-statistic: 10.27 on 3 and 400 DF, p-value: 1.572e-06
summary(lm(trust ~ rigid + performance, movie))
##
## Call:
## lm(formula = trust ~ rigid + performance, data = movie)
##
## Residuals:
## Min 1Q Median 3Q Max
## -65.336 -25.586 5.578 25.749 56.007
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 60.507 2.672 22.649 < 2e-16 ***
## rigidrigid 4.829 3.075 1.570 0.117
## performanceyes -16.514 3.084 -5.355 1.44e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.85 on 401 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.07013, Adjusted R-squared: 0.06549
## F-statistic: 15.12 on 2 and 401 DF, p-value: 4.664e-07
psych <- reshape(r,
varying = c("psych_1","Q61_1"),
v.names = "trust",
timevar = "performance",
times = c("yes","no"),
direction = "long")
summary(lm(trust ~ rigid * performance, psych))
##
## Call:
## lm(formula = trust ~ rigid * performance, data = psych)
##
## Residuals:
## Min 1Q Median 3Q Max
## -77.310 -19.851 5.499 22.690 46.149
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 74.040 2.751 26.910 < 2e-16 ***
## rigidrigid 3.270 4.034 0.811 0.418
## performanceyes -19.079 3.863 -4.939 1.15e-06 ***
## rigidrigid:performanceyes -4.381 5.501 -0.796 0.426
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27.51 on 400 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.131, Adjusted R-squared: 0.1245
## F-statistic: 20.1 on 3 and 400 DF, p-value: 3.766e-12
summary(lm(trust ~ rigid + performance, psych))
##
## Call:
## lm(formula = trust ~ rigid + performance, data = psych)
##
## Residuals:
## Min 1Q Median 3Q Max
## -76.051 -19.833 5.188 22.378 46.103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 75.1358 2.3815 31.550 <2e-16 ***
## rigidrigid 0.9149 2.7415 0.334 0.739
## performanceyes -21.2386 2.7490 -7.726 9e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27.5 on 401 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.1296, Adjusted R-squared: 0.1253
## F-statistic: 29.85 on 2 and 401 DF, p-value: 8.204e-13
parole <- reshape(r,
varying = c("parole_1","Q62_1"),
v.names = "trust",
timevar = "performance",
times = c("yes","no"),
direction = "long")
summary(lm(trust ~ rigid * performance, parole))
##
## Call:
## lm(formula = trust ~ rigid * performance, data = parole)
##
## Residuals:
## Min 1Q Median 3Q Max
## -76.103 -25.516 3.788 23.897 52.680
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 67.900 3.111 21.827 < 2e-16 ***
## rigidrigid 8.203 4.561 1.799 0.0728 .
## performanceyes -20.580 4.367 -4.712 3.39e-06 ***
## rigidrigid:performanceyes -7.252 6.220 -1.166 0.2443
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.11 on 400 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.1352, Adjusted R-squared: 0.1288
## F-statistic: 20.85 on 3 and 400 DF, p-value: 1.43e-12
summary(lm(trust ~ rigid + performance, parole))
##
## Call:
## lm(formula = trust ~ rigid + performance, data = parole)
##
## Residuals:
## Min 1Q Median 3Q Max
## -74.018 -24.902 5.363 25.982 54.441
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 69.714 2.695 25.868 < 2e-16 ***
## rigidrigid 4.304 3.102 1.387 0.166
## performanceyes -24.155 3.111 -7.765 6.91e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.12 on 401 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.1323, Adjusted R-squared: 0.128
## F-statistic: 30.57 on 2 and 401 DF, p-value: 4.398e-13
gpa <- reshape(r,
varying = c("gpa_1","Q63_1"),
v.names = "trust",
timevar = "performance",
times = c("yes","no"),
direction = "long")
summary(lm(trust ~ rigid * performance, gpa))
##
## Call:
## lm(formula = trust ~ rigid * performance, data = gpa)
##
## Residuals:
## Min 1Q Median 3Q Max
## -61.126 -30.515 -2.063 29.388 58.534
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 55.660 3.290 16.916 < 2e-16 ***
## rigidrigid 5.466 4.824 1.133 0.25782
## performanceyes -14.194 4.619 -3.073 0.00227 **
## rigidrigid:performanceyes -4.011 6.579 -0.610 0.54237
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.9 on 400 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.05895, Adjusted R-squared: 0.0519
## F-statistic: 8.353 on 3 and 400 DF, p-value: 2.126e-05
summary(lm(trust ~ rigid + performance, gpa))
##
## Call:
## lm(formula = trust ~ rigid + performance, data = gpa)
##
## Residuals:
## Min 1Q Median 3Q Max
## -59.973 -29.973 -1.492 30.070 59.508
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 56.663 2.847 19.902 < 2e-16 ***
## rigidrigid 3.310 3.277 1.010 0.313
## performanceyes -16.172 3.286 -4.921 1.26e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 32.88 on 401 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.05808, Adjusted R-squared: 0.05338
## F-statistic: 12.36 on 2 and 401 DF, p-value: 6.164e-06
job <- reshape(r,
varying = c("job_1","Q64_1"),
v.names = "trust",
timevar = "performance",
times = c("yes","no"),
direction = "long")
summary(lm(trust ~ rigid * performance, job))
##
## Call:
## lm(formula = trust ~ rigid * performance, data = job)
##
## Residuals:
## Min 1Q Median 3Q Max
## -73.126 -27.718 3.289 26.874 53.845
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65.740 3.188 20.620 < 2e-16 ***
## rigidrigid 7.386 4.674 1.580 0.115
## performanceyes -19.585 4.476 -4.376 1.55e-05 ***
## rigidrigid:performanceyes -5.831 6.374 -0.915 0.361
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.88 on 400 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.1138, Adjusted R-squared: 0.1071
## F-statistic: 17.12 on 3 and 400 DF, p-value: 1.777e-10
summary(lm(trust ~ rigid + performance, job))
##
## Call:
## lm(formula = trust ~ rigid + performance, data = job)
##
## Residuals:
## Min 1Q Median 3Q Max
## -71.450 -28.397 2.676 27.261 55.261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 67.199 2.760 24.346 < 2e-16 ***
## rigidrigid 4.251 3.177 1.338 0.182
## performanceyes -22.460 3.186 -7.049 7.92e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.87 on 401 degrees of freedom
## (404 observations deleted due to missingness)
## Multiple R-squared: 0.1119, Adjusted R-squared: 0.1075
## F-statistic: 25.27 on 2 and 401 DF, p-value: 4.63e-11
library(metap)
#pooled p values... first for rigidity:
vcont<-c(.05, .11, .26, .20, .10, .42, .07, .26, .11)
sumlog(vcont)
## chisq = 35.08643 with df = 18 p = 0.009218434
#then for interaction
vcont<-c(.65, .09, .72, .13, .44, .43, .24, .54, .36)
sumlog(vcont)
## chisq = 19.87472 with df = 18 p = 0.3399171
T-tests, for each task compared to scale midpoint (trust both algorithm and human equally)
t.test(r$personality_1, mu=50)
##
## One Sample t-test
##
## data: r$personality_1
## t = 6.2862, df = 216, p-value = 1.775e-09
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 58.66767 66.58579
## sample estimates:
## mean of x
## 62.62673
t.test(r$car_1, mu=50)
##
## One Sample t-test
##
## data: r$car_1
## t = -0.67478, df = 216, p-value = 0.5005
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 43.74811 53.06295
## sample estimates:
## mean of x
## 48.40553
t.test(r$joke_1, mu=50)
##
## One Sample t-test
##
## data: r$joke_1
## t = 7.098, df = 216, p-value = 1.796e-11
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 59.76623 67.27525
## sample estimates:
## mean of x
## 63.52074
t.test(r$cancer_1, mu=50)
##
## One Sample t-test
##
## data: r$cancer_1
## t = -3.3688, df = 216, p-value = 0.0008938
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 38.48815 46.98650
## sample estimates:
## mean of x
## 42.73733
t.test(r$movie_1, mu=50)
##
## One Sample t-test
##
## data: r$movie_1
## t = -1.6988, df = 216, p-value = 0.0908
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 42.50385 50.55606
## sample estimates:
## mean of x
## 46.52995
t.test(r$psych_1, mu=50)
##
## One Sample t-test
##
## data: r$psych_1
## t = 2.2392, df = 216, p-value = 0.02616
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 50.52436 58.23140
## sample estimates:
## mean of x
## 54.37788
t.test(r$parole_1, mu=50)
##
## One Sample t-test
##
## data: r$parole_1
## t = -0.99897, df = 216, p-value = 0.3189
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 43.51959 52.12096
## sample estimates:
## mean of x
## 47.82028
t.test(r$gpa_1, mu=50)
##
## One Sample t-test
##
## data: r$gpa_1
## t = -3.5061, df = 216, p-value = 0.000553
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 37.86258 46.59825
## sample estimates:
## mean of x
## 42.23041
t.test(r$job_1, mu=50)
##
## One Sample t-test
##
## data: r$job_1
## t = -1.3064, df = 216, p-value = 0.1928
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 42.40456 51.54014
## sample estimates:
## mean of x
## 46.97235
We also measured receptivity to algorithms - that doesn’t interact with either manipulation either.
hist(r$recept)
long$rigid[long$rigid==1]<-"rigid"
long$rigid[long$notrigid==1]<-"notrigid"
summary(aov(trust ~ recept * rigid, long))
## Df Sum Sq Mean Sq F value Pr(>F)
## recept 1 133211 133211 138.256 <2e-16 ***
## rigid 1 264 264 0.274 0.601
## recept:rigid 1 250 250 0.260 0.610
## Residuals 1732 1668795 964
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1496 observations deleted due to missingness
summary(aov(trust ~ recept * obj, long))
## Df Sum Sq Mean Sq F value Pr(>F)
## recept 1 133211 133211 138.713 <2e-16 ***
## obj 1 5523 5523 5.751 0.0166 *
## recept:obj 1 491 491 0.512 0.4746
## Residuals 1732 1663295 960
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1496 observations deleted due to missingness