store.df <- read.csv(paste("Deans Dilemma.csv", sep=""))
aggregate(store.df$Salary[store.df$Placement_B==1],by=list(Gender=store.df$Gender[store.df$Placement_B==1]),FUN = mean)
## Gender x
## 1 F 253068.0
## 2 M 284241.9
mean(store.df$Salary[store.df$Gender.B==0 & store.df$Placement_B==1])
## [1] 284241.9
mean(store.df$Salary[store.df$Gender.B==1 & store.df$Placement_B==1])
## [1] 253068
t.test(Salary[store.df$Placement_B==1] ~ Gender[store.df$Placement_B==1], data=store.df)
##
## Welch Two Sample t-test
##
## data: Salary[store.df$Placement_B == 1] by Gender[store.df$Placement_B == 1]
## t = -3.0757, df = 243.03, p-value = 0.00234
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -51138.42 -11209.22
## sample estimates:
## mean in group F mean in group M
## 253068.0 284241.9