library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(corrplot)
## corrplot 0.84 loaded
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
library(perturb)
library(ROCR)
## Loading required package: gplots
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
library(tidyr)

concrete <- read.csv('/Users/kevinpiger/Desktop/這個資料夾要燒到光碟裡/Concrete_Data.csv')
colnames(concrete) <- c('Cement','Blast',   'FlyAsh',   'Water', 'Superplasticizer', 'Coarse', 'Fine', 'Age', 'Concrete')
# 將PA改為每平方公尺承受力量 #
concrete <- concrete %>% mutate(kgC = Concrete * 10) 
attach(concrete)

# kgC 超過400的為 1 ,其餘為 0 #
over400 = matrix(0,length(concrete[,1]),1)
over400 <- ifelse(kgC >= 400, 1, 0)
concrete <- cbind(concrete,over400)
str(concrete)
## 'data.frame':    1029 obs. of  11 variables:
##  $ Cement          : num  540 332 332 199 266 ...
##  $ Blast           : num  0 142 142 132 114 ...
##  $ FlyAsh          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Water           : num  162 228 228 192 228 228 228 228 228 192 ...
##  $ Superplasticizer: num  2.5 0 0 0 0 0 0 0 0 0 ...
##  $ Coarse          : num  1055 932 932 978 932 ...
##  $ Fine            : num  676 594 594 826 670 ...
##  $ Age             : int  28 270 365 360 90 365 28 28 28 90 ...
##  $ Concrete        : num  61.9 40.3 41 44.3 47 ...
##  $ kgC             : num  619 403 410 443 470 ...
##  $ over400         : num  1 1 1 1 1 1 0 1 0 0 ...
#將一維數據標準化
std <- function(v){
  v_bar <- mean(v)
  s <- sd(v)
  t_score <- (v - v_bar)/s
  return(t_score)
}
temp <- concrete[,c(1:8,11)]
temp[,1:8] <- temp[,1:8] %>% apply(2,std) %>%as.data.frame()
# 看各變數對於應變數之boxplot #

df<-gather(temp,measure,num,Cement:Age)
df$over400<-df$over400 %>% as.factor()
ggplot(data=df)+geom_boxplot(aes(x=measure,y=num,fill=over400))

# 看各變數之間是否有相關 #
# 圖表呈現 #

round(cor(as.matrix(concrete[,1:8])),3)
##                  Cement  Blast FlyAsh  Water Superplasticizer Coarse
## Cement            1.000 -0.274 -0.397 -0.080            0.094 -0.112
## Blast            -0.274  1.000 -0.325  0.107            0.043 -0.283
## FlyAsh           -0.397 -0.325  1.000 -0.258            0.377 -0.009
## Water            -0.080  0.107 -0.258  1.000           -0.658 -0.182
## Superplasticizer  0.094  0.043  0.377 -0.658            1.000 -0.266
## Coarse           -0.112 -0.283 -0.009 -0.182           -0.266  1.000
## Fine             -0.221 -0.283  0.078 -0.452            0.222 -0.178
## Age               0.083 -0.044 -0.155  0.277           -0.193 -0.003
##                    Fine    Age
## Cement           -0.221  0.083
## Blast            -0.283 -0.044
## FlyAsh            0.078 -0.155
## Water            -0.452  0.277
## Superplasticizer  0.222 -0.193
## Coarse           -0.178 -0.003
## Fine              1.000 -0.157
## Age              -0.157  1.000
corrplot(cor(as.matrix(concrete[,1:8])))

# 挑出70% 的資料進行建模 #
n <- nrow(concrete)
set.seed(106354003)
concrete_new <- concrete[sample(n),]
t_idx <- sample(seq_len(n), size = round(0.7 * n))
concrete_train <- concrete_new[t_idx,] %>% as.data.frame()
concrete_test <- concrete_new[ - t_idx,] %>% as.data.frame()

# 建立最初模型 #
# 羅吉斯回歸 #
modle1.0 <- glm(over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer +Superplasticizer*Water+ Coarse + Fine + Age + Water *Superplasticizer , data = concrete_train,family=binomial(link="logit"), na.action=na.exclude)

# 檢定個別變數係數是否顯著 #
anova(object=modle1.0, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: over400
## 
## Terms added sequentially (first to last)
## 
## 
##                        Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                                     719     942.97              
## Cement                  1  131.761       718     811.21 < 2.2e-16 ***
## Blast                   1   21.565       717     789.65 3.420e-06 ***
## FlyAsh                  1   42.210       716     747.44 8.199e-11 ***
## Water                   1   15.566       715     731.87 7.969e-05 ***
## Superplasticizer        1    3.305       714     728.57   0.06905 .  
## Coarse                  1    1.904       713     726.66   0.16768    
## Fine                    1    0.306       712     726.36   0.58019    
## Age                     1  156.261       711     570.10 < 2.2e-16 ***
## Water:Superplasticizer  1    0.337       710     569.76   0.56141    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(modle1.0)
## 
## Call:
## glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Superplasticizer * Water + Coarse + Fine + Age + Water * 
##     Superplasticizer, family = binomial(link = "logit"), data = concrete_train, 
##     na.action = na.exclude)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.4649  -0.5815  -0.3007   0.5425   2.5850  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -5.8563634  8.4376291  -0.694 0.487634    
## Cement                  0.0170178  0.0028196   6.035 1.58e-09 ***
## Blast                   0.0112936  0.0032392   3.487 0.000489 ***
## FlyAsh                  0.0128767  0.0042563   3.025 0.002484 ** 
## Water                  -0.0277790  0.0147047  -1.889 0.058876 .  
## Superplasticizer       -0.0528684  0.1914016  -0.276 0.782381    
## Coarse                  0.0020987  0.0029331   0.716 0.474296    
## Fine                    0.0002726  0.0033787   0.081 0.935684    
## Age                     0.0255224  0.0029644   8.610  < 2e-16 ***
## Water:Superplasticizer  0.0006541  0.0011137   0.587 0.556977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 942.97  on 719  degrees of freedom
## Residual deviance: 569.76  on 710  degrees of freedom
## AIC: 589.76
## 
## Number of Fisher Scoring iterations: 5
AIC(modle1.0)
## [1] 589.7588
summary(modle1.0)
## 
## Call:
## glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Superplasticizer * Water + Coarse + Fine + Age + Water * 
##     Superplasticizer, family = binomial(link = "logit"), data = concrete_train, 
##     na.action = na.exclude)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.4649  -0.5815  -0.3007   0.5425   2.5850  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -5.8563634  8.4376291  -0.694 0.487634    
## Cement                  0.0170178  0.0028196   6.035 1.58e-09 ***
## Blast                   0.0112936  0.0032392   3.487 0.000489 ***
## FlyAsh                  0.0128767  0.0042563   3.025 0.002484 ** 
## Water                  -0.0277790  0.0147047  -1.889 0.058876 .  
## Superplasticizer       -0.0528684  0.1914016  -0.276 0.782381    
## Coarse                  0.0020987  0.0029331   0.716 0.474296    
## Fine                    0.0002726  0.0033787   0.081 0.935684    
## Age                     0.0255224  0.0029644   8.610  < 2e-16 ***
## Water:Superplasticizer  0.0006541  0.0011137   0.587 0.556977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 942.97  on 719  degrees of freedom
## Residual deviance: 569.76  on 710  degrees of freedom
## AIC: 589.76
## 
## Number of Fisher Scoring iterations: 5
# 有顯著的變數剩下 Cement,Blast,FlyAsh,Water, Age #
# 再進行一次羅基斯回歸 #

modle1.1 <- glm(over400 ~ Cement + Blast + FlyAsh + Water + Age -1, data  = concrete_train, family=binomial(link="logit"), na.action=na.exclude)
anova(modle1.1,test = 'Chisq')
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: over400
## 
## Terms added sequentially (first to last)
## 
## 
##        Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                     720     998.13              
## Cement  1   10.080       719     988.05  0.001499 ** 
## Blast   1    7.264       718     980.79  0.007037 ** 
## FlyAsh  1   27.306       717     953.48 1.737e-07 ***
## Water   1  216.354       716     737.13 < 2.2e-16 ***
## Age     1  160.902       715     576.23 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC(modle1.1)
## [1] 586.2268
summary(modle1.1)
## 
## Call:
## glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Age - 
##     1, family = binomial(link = "logit"), data = concrete_train, 
##     na.action = na.exclude)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.4399  -0.5763  -0.3102   0.5326   2.6476  
## 
## Coefficients:
##         Estimate Std. Error z value Pr(>|z|)    
## Cement  0.015691   0.001283  12.228  < 2e-16 ***
## Blast   0.010510   0.001414   7.435 1.04e-13 ***
## FlyAsh  0.012091   0.001891   6.395 1.60e-10 ***
## Water  -0.042693   0.003156 -13.528  < 2e-16 ***
## Age     0.024672   0.002779   8.878  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 998.13  on 720  degrees of freedom
## Residual deviance: 576.23  on 715  degrees of freedom
## AIC: 586.23
## 
## Number of Fisher Scoring iterations: 5
# 逐步回歸 #
step(modle1.0,direction = 'both')
## Start:  AIC=589.76
## over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Superplasticizer * Water + Coarse + Fine + Age + Water * 
##     Superplasticizer
## 
##                          Df Deviance    AIC
## - Fine                    1   569.77 587.77
## - Water:Superplasticizer  1   570.10 588.10
## - Coarse                  1   570.27 588.27
## <none>                        569.76 589.76
## - FlyAsh                  1   579.36 597.36
## - Blast                   1   582.27 600.27
## - Cement                  1   610.72 628.72
## - Age                     1   713.33 731.33
## 
## Step:  AIC=587.77
## over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Coarse + Age + Water:Superplasticizer
## 
##                          Df Deviance    AIC
## - Water:Superplasticizer  1   570.11 586.11
## - Coarse                  1   570.98 586.98
## <none>                        569.77 587.77
## + Fine                    1   569.76 589.76
## - FlyAsh                  1   590.61 606.61
## - Blast                   1   610.78 626.78
## - Cement                  1   707.57 723.57
## - Age                     1   713.34 729.34
## 
## Step:  AIC=586.11
## over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Coarse + Age
## 
##                          Df Deviance    AIC
## - Coarse                  1   571.22 585.22
## <none>                        570.11 586.11
## - Superplasticizer        1   573.50 587.50
## + Water:Superplasticizer  1   569.77 587.77
## + Fine                    1   570.10 588.10
## - Water                   1   580.39 594.39
## - FlyAsh                  1   593.80 607.80
## - Blast                   1   612.35 626.35
## - Cement                  1   707.75 721.75
## - Age                     1   726.66 740.66
## 
## Step:  AIC=585.22
## over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Age
## 
##                          Df Deviance    AIC
## <none>                        571.22 585.22
## - Superplasticizer        1   573.68 585.68
## + Coarse                  1   570.11 586.11
## + Fine                    1   570.60 586.60
## + Water:Superplasticizer  1   570.98 586.98
## - Water                   1   590.11 602.11
## - FlyAsh                  1   593.81 605.81
## - Blast                   1   613.95 625.95
## - Cement                  1   716.78 728.78
## - Age                     1   728.57 740.57
## 
## Call:  glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Age, family = binomial(link = "logit"), data = concrete_train, 
##     na.action = na.exclude)
## 
## Coefficients:
##      (Intercept)            Cement             Blast            FlyAsh  
##         -3.06354           0.01621           0.01049           0.01242  
##            Water  Superplasticizer               Age  
##         -0.02847           0.04599           0.02513  
## 
## Degrees of Freedom: 719 Total (i.e. Null);  713 Residual
## Null Deviance:       943 
## Residual Deviance: 571.2     AIC: 585.2
model1.2 <- glm(formula = over400 ~ Cement+ Blast+ FlyAsh+ Water+ Superplasticizer 
                +Age, family=binomial(link="logit"), data = concrete_train)
summary(model1.2)
## 
## Call:
## glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Age, family = binomial(link = "logit"), data = concrete_train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.4635  -0.5833  -0.2988   0.5307   2.5170  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -3.063542   1.405969  -2.179   0.0293 *  
## Cement            0.016212   0.001592  10.184  < 2e-16 ***
## Blast             0.010488   0.001639   6.398 1.57e-10 ***
## FlyAsh            0.012423   0.002706   4.592 4.40e-06 ***
## Water            -0.028466   0.006881  -4.137 3.52e-05 ***
## Superplasticizer  0.045985   0.029515   1.558   0.1192    
## Age               0.025126   0.002876   8.737  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 942.97  on 719  degrees of freedom
## Residual deviance: 571.22  on 713  degrees of freedom
## AIC: 585.22
## 
## Number of Fisher Scoring iterations: 5
anova(model1.2, test = 'Chisq')
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: over400
## 
## Terms added sequentially (first to last)
## 
## 
##                  Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                               719     942.97              
## Cement            1  131.761       718     811.21 < 2.2e-16 ***
## Blast             1   21.565       717     789.65 3.420e-06 ***
## FlyAsh            1   42.210       716     747.44 8.199e-11 ***
## Water             1   15.566       715     731.87 7.969e-05 ***
## Superplasticizer  1    3.305       714     728.57   0.06905 .  
## Age               1  157.342       713     571.22 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 比較model1.1以及model1.2準確性, AIC #

# 原始模型刪減不顯著係數之變數 model1.1 #
modle_train <- glm(formula = over400 ~ Cement+ Blast+ FlyAsh+ Water 
                   +Age - 1, family=binomial(link="logit"), data = concrete_train)
result <- predict(modle_train, newdata = concrete_test, type = "response")
result_Approved <- ifelse(result > 0.7, 1, 0)
cm <- table(concrete_test$over400, result_Approved, dnn = c("實際", "預測"))
cm
##     預測
## 實際   0   1
##    0 182  10
##    1  58  59
cm[4] / sum(cm[, 2])
## [1] 0.8550725
cm[1] / sum(cm[, 1])
## [1] 0.7583333
accuracy <- sum(diag(cm)) / sum(cm)
accuracy
## [1] 0.7799353
AIC(modle_train)
## [1] 586.2268
# 逐步回歸模型 model1.2 #
modle_train <- glm(formula = over400 ~ Cement+ Blast+ FlyAsh+ Water+ Superplasticizer 
                   +Age, family=binomial(link="logit"), data = concrete_train)
result <- predict(modle_train, newdata = concrete_test, type = "response")
result_Approved <- ifelse(result > 0.7, 1, 0)
cm <- table(concrete_test$over400, result_Approved, dnn = c("實際", "預測"))
cm
##     預測
## 實際   0   1
##    0 179  13
##    1  60  57
cm[4] / sum(cm[, 2])
## [1] 0.8142857
cm[1] / sum(cm[, 1])
## [1] 0.748954
accuracy <- sum(diag(cm)) / sum(cm)
accuracy
## [1] 0.763754
AIC(modle_train)
## [1] 585.2244
# 最終模型確認 #
# 選用逐步迴歸之模型 #
model_final <- glm(formula = over400 ~ Cement+ Blast+ FlyAsh+ Water+ Superplasticizer
 + Age, family = binomial(link = "logit"), data =concrete_train, na.action = na.exclude)
summary(model_final)
## 
## Call:
## glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Age, family = binomial(link = "logit"), data = concrete_train, 
##     na.action = na.exclude)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.4635  -0.5833  -0.2988   0.5307   2.5170  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -3.063542   1.405969  -2.179   0.0293 *  
## Cement            0.016212   0.001592  10.184  < 2e-16 ***
## Blast             0.010488   0.001639   6.398 1.57e-10 ***
## FlyAsh            0.012423   0.002706   4.592 4.40e-06 ***
## Water            -0.028466   0.006881  -4.137 3.52e-05 ***
## Superplasticizer  0.045985   0.029515   1.558   0.1192    
## Age               0.025126   0.002876   8.737  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 942.97  on 719  degrees of freedom
## Residual deviance: 571.22  on 713  degrees of freedom
## AIC: 585.22
## 
## Number of Fisher Scoring iterations: 5
anova(model_final,test = 'Chisq')
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: over400
## 
## Terms added sequentially (first to last)
## 
## 
##                  Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                               719     942.97              
## Cement            1  131.761       718     811.21 < 2.2e-16 ***
## Blast             1   21.565       717     789.65 3.420e-06 ***
## FlyAsh            1   42.210       716     747.44 8.199e-11 ***
## Water             1   15.566       715     731.87 7.969e-05 ***
## Superplasticizer  1    3.305       714     728.57   0.06905 .  
## Age               1  157.342       713     571.22 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 檢測共線性 #
vif(model_final)
##           Cement            Blast           FlyAsh            Water 
##         2.161812         1.947822         2.848225         1.704262 
## Superplasticizer              Age 
##         2.121355         1.192812
# 檢測是否有離群值 #
# 計算> 1 存在離群值 #
out <- cooks.distance(model_final)
out
##          380           18          774          140          970 
## 3.547240e-04 4.196392e-03 1.492388e-04 3.384995e-04 7.471040e-04 
##          562          762          287         1015          462 
## 1.538546e-04 1.574881e-02 4.022226e-04 1.956532e-03 5.915088e-03 
##          998           41          114          143          677 
## 3.760821e-04 9.770760e-08 3.953719e-03 9.617852e-05 8.843760e-07 
##          183          420          241          251          746 
## 1.218328e-04 1.587436e-04 4.451319e-05 4.990092e-05 1.772489e-03 
##          653          313          838          364           88 
## 3.947945e-05 5.312155e-04 6.303636e-04 2.383976e-04 3.769154e-03 
##          351          600          944           61         1005 
## 2.940844e-03 3.462082e-05 1.399343e-04 2.343146e-04 1.627259e-04 
##          267          352          541          199          906 
## 2.866059e-03 1.687980e-03 2.511337e-05 4.314204e-05 4.320809e-04 
##           78          341          989          712          255 
## 3.056833e-03 1.507875e-03 2.713072e-05 1.611634e-04 8.524177e-05 
##          873          347          471          845          582 
## 3.344879e-05 1.933157e-03 1.264943e-04 1.819274e-03 1.782559e-05 
##           29          681          896          750          175 
## 5.145186e-04 6.638953e-06 1.754726e-03 3.037894e-03 3.745190e-05 
##          278          375          650          438          413 
## 1.929518e-03 5.131578e-05 6.354516e-05 4.514876e-03 1.856253e-04 
##          208          367          660          580         1011 
## 1.025748e-03 1.393901e-03 7.951873e-05 3.799832e-04 1.302648e-03 
##          656          536          309          400          542 
## 6.356163e-06 2.937745e-04 1.677868e-04 9.271661e-04 1.396936e-04 
##          644          767          837          201          719 
## 1.314802e-04 3.221897e-04 3.968950e-04 1.017796e-04 8.670852e-03 
##          688          368          590          294          990 
## 5.744896e-07 6.589726e-04 3.434902e-06 7.243223e-05 2.754373e-03 
##          552          338          484          900          498 
## 3.014786e-05 3.852543e-04 4.697680e-05 3.269939e-04 3.834478e-04 
##          383          947          701          850          716 
## 1.087921e-03 4.635764e-04 1.677575e-03 2.721778e-04 1.830369e-06 
##          479          779          713          933          492 
## 6.134084e-03 3.523377e-05 1.593385e-05 4.460470e-03 5.777672e-04 
##          907          586          526           64          697 
## 7.508706e-04 1.492988e-04 5.107309e-03 4.418050e-03 6.810503e-07 
##          108          427          164           13          940 
## 6.700332e-04 5.659049e-05 1.432417e-05 1.362828e-02 3.086843e-04 
##          249          606          315          922          683 
## 2.330735e-05 2.789418e-06 6.315487e-04 1.197402e-04 1.983613e-04 
##          983          431          946           89          141 
## 3.160276e-04 4.795368e-05 3.268102e-04 7.159582e-03 5.925942e-05 
##          971          344          421          763          568 
## 1.644719e-03 4.132215e-04 1.346441e-04 1.329401e-04 2.290010e-04 
##         1020          628          403          861          572 
## 2.801459e-03 4.340707e-06 8.236015e-04 1.140357e-03 2.328336e-05 
##          523          941          592          638          988 
## 3.180997e-04 1.454227e-05 3.070979e-04 2.489767e-04 7.654103e-05 
##         1013          373           81          817          651 
## 2.370291e-03 1.241440e-03 5.009563e-03 2.470275e-03 2.002250e-06 
##           66          714          686          322          109 
## 5.499378e-06 1.346430e-06 2.564769e-04 2.235343e-03 7.782677e-04 
##          206          358          995           47         1024 
## 4.738235e-05 5.626052e-04 6.233288e-04 3.693417e-04 5.471219e-04 
##           57          676          967          691          742 
## 6.072134e-06 1.811411e-05 3.998407e-05 5.670793e-06 4.454466e-04 
##          675          177          361          463          731 
## 8.993544e-05 3.745190e-05 2.387908e-03 1.842550e-03 3.860280e-05 
##          528          374          165          415          561 
## 5.338807e-03 3.370978e-05 1.262431e-05 1.987533e-05 4.464723e-04 
##          736           23          252          524          583 
## 3.368944e-06 4.747819e-03 1.346500e-04 3.180997e-04 1.627071e-03 
##         1004          706          822          171           39 
## 7.386259e-04 5.549886e-05 2.949141e-05 2.320159e-06 2.247442e-02 
##         1012          243          876          603          539 
## 1.081356e-03 3.455882e-03 2.203792e-05 1.544039e-02 4.454466e-04 
##          891          836          615           45          318 
## 3.346809e-04 2.405319e-04 1.006279e-02 2.695624e-04 6.669926e-04 
##          973          220          560          986          570 
## 8.130924e-05 3.357562e-05 5.139138e-05 4.358820e-04 3.452052e-05 
##          930          987           60          770          454 
## 1.334887e-03 4.113892e-03 1.543074e-04 3.860280e-05 1.231404e-04 
##          620          966          766          371          626 
## 1.083791e-01 2.030134e-05 2.037748e-04 2.835088e-04 2.198591e-06 
##           91          333          489          855          456 
## 3.769154e-03 4.383306e-04 3.595930e-03 1.081472e-03 4.409808e-03 
##          924           84          781          529          513 
## 8.680172e-05 4.969241e-03 1.100019e-05 1.101925e-04 4.856533e-04 
##          867          519          728          335          636 
## 5.847541e-04 2.752711e-03 5.928423e-05 4.402799e-04 4.229057e-05 
##          381          811          870          915          984 
## 2.307309e-03 3.504721e-05 5.327585e-05 5.539412e-04 2.030134e-05 
##          869         1010          694          982          617 
## 7.999214e-04 7.102765e-03 6.093453e-05 1.810835e-04 2.335072e-06 
##          749          920          905          579            4 
## 2.452240e-03 3.021585e-04 3.527328e-05 2.762211e-05 3.893472e-06 
##          932          396           30          444          782 
## 5.110350e-04 2.600111e-04 2.656441e-06 7.574841e-05 2.474131e-05 
##          921            6          292          682          324 
## 2.029668e-05 1.653566e-07 2.457652e-03 5.492833e-06 5.693905e-04 
##           44           53          963          550          369 
## 3.640328e-03 9.510675e-03 3.231908e-04 1.479791e-04 1.305011e-04 
##          349           86          864          551          574 
## 4.255491e-04 3.769154e-03 4.288271e-04 3.230364e-06 7.909510e-06 
##          148          517          795           72          440 
## 1.206348e-05 1.098454e-05 4.050768e-06 9.226105e-03 9.175031e-05 
##          258         1000          470           87          607 
## 2.264000e-03 4.083765e-03 2.330916e-03 3.729191e-03 5.004306e-06 
##          664          516           36          703          190 
## 2.851930e-05 9.396078e-06 9.377296e-05 1.675169e-05 1.478348e-05 
##          521          259          624          117          738 
## 3.798477e-04 7.020480e-05 3.096136e-05 8.743768e-04 1.517818e-05 
##          755          494          610          196          449 
## 1.197220e-06 9.218522e-05 1.085581e-01 5.877790e-05 1.320222e-03 
##         1018          525          689          885          191 
## 1.255177e-03 5.107309e-03 1.875523e-05 1.427763e-04 2.439882e-05 
##          657          288          409          500          745 
## 1.684610e-06 2.505741e-03 1.077262e-04 5.103407e-04 2.489858e-05 
##          530          455          509          512          846 
## 1.101925e-04 1.766141e-03 2.003823e-04 9.147394e-03 1.039252e-03 
##          336          853          125          601          173 
## 1.603295e-03 7.224785e-03 4.606287e-05 5.781795e-05 5.359154e-05 
##          284          578          147           73          459 
## 5.689864e-05 2.570808e-04 2.082377e-04 1.243038e-02 1.408832e-03 
##          860          527          961          138          168 
## 6.877821e-04 5.338807e-03 6.413309e-03 7.916627e-04 9.642105e-07 
##          887          976          803          131          155 
## 4.692353e-03 9.212678e-04 1.297805e-04 2.853392e-04 1.284944e-04 
##          623          848          378           46          328 
## 1.198744e-05 1.524751e-04 4.969118e-03 3.860280e-05 6.596009e-04 
##          658          430           93          793          918 
## 2.933507e-04 2.731231e-05 7.509049e-04 1.017500e-05 2.398428e-05 
##          575          302          350          908          257 
## 8.205912e-06 9.444602e-04 5.879476e-04 1.622436e-03 3.502399e-03 
##          248          901          810          705          314 
## 2.762872e-03 2.201904e-04 1.584747e-05 1.240527e-06 4.569383e-04 
##          465          179          842          247          854 
## 1.079414e-03 3.745190e-05 1.662847e-04 1.331171e-04 1.331018e-03 
##          761          979          567          158          729 
## 7.521059e-04 3.788302e-03 1.220349e-05 7.525044e-05 7.281273e-04 
##          159          280          340          799          556 
## 2.385823e-05 5.593818e-05 3.149424e-04 1.921181e-03 5.891009e-04 
##          735          826          632          581          788 
## 2.521253e-03 1.461438e-03 7.878098e-05 1.240217e-04 4.444618e-05 
##          299          820         1028          223          122 
## 1.854893e-04 9.019190e-08 1.420445e-04 1.286628e-03 1.935128e-05 
##          163          760          802          200         1007 
## 1.000263e-04 1.805788e-04 1.054932e-04 6.258529e-05 2.555555e-04 
##          943          269          412          290          609 
## 1.204389e-05 4.843549e-05 2.162170e-04 5.251890e-05 5.570251e-03 
##          868          642          718          670          804 
## 9.103047e-04 1.371273e-05 1.466827e-06 5.029648e-03 2.937745e-04 
##          176          134          791          216          892 
## 2.363075e-05 3.521696e-04 6.406692e-04 1.186471e-04 1.938807e-04 
##          153          365          968          835          493 
## 2.936423e-04 3.211655e-04 3.456098e-05 4.903950e-04 6.128967e-04 
##          414          916          310          598           56 
## 3.911650e-05 3.981008e-03 2.116008e-04 2.323331e-05 5.831801e-08 
##          909           34          181          376          263 
## 1.999738e-05 9.944153e-06 5.135944e-06 8.800839e-05 2.215618e-03 
##          665           75          844          722          794 
## 2.821283e-06 5.975886e-03 2.912046e-03 1.584747e-05 1.035987e-02 
##          154         1027          360          880          188 
## 9.313970e-05 5.343768e-05 1.167825e-03 1.254664e-05 3.540951e-03 
##          996          227           24          236           92 
## 5.060542e-05 1.187851e-02 1.143331e-06 6.368271e-03 1.544637e-03 
##          654          229          508          936          679 
## 3.584488e-06 2.108492e-05 7.867881e-03 3.362770e-05 1.483491e-05 
##          167          540          645          732          222 
## 1.621457e-05 1.461438e-03 1.838563e-04 4.444618e-05 1.821178e-04 
##          461            9          778          616          776 
## 1.411991e-03 1.105010e-03 1.565428e-05 1.069527e-01 4.962268e-05 
##         1006          410          602          806          618 
## 6.516696e-05 1.689836e-04 7.108623e-04 1.578956e-04 1.032382e-04 
##          416          877          326          357           85 
## 3.272481e-04 3.424225e-04 3.609469e-03 1.476253e-03 7.120082e-03 
##          629          871          824          559          965 
## 3.197245e-06 1.326567e-04 1.766053e-05 7.137826e-03 2.379298e-03 
##          753          283           17          881          495 
## 7.042736e-04 1.896898e-03 1.736486e-06 1.427763e-04 9.241016e-05 
##          878           26          112          452          522 
## 1.410968e-05 1.029721e-05 5.491133e-04 2.163754e-03 1.589133e-03 
##          950           90          662           11          955 
## 1.624677e-03 2.613292e-04 4.483539e-05 1.604236e-05 1.751137e-04 
##          825          563          219          613          240 
## 4.638091e-04 7.540846e-04 2.221260e-05 6.046233e-06 2.720524e-05 
##          160          405          980          733          446 
## 1.284944e-04 2.505079e-04 4.125095e-05 9.354898e-05 2.402881e-03 
##          833          348          487          447           31 
## 2.602184e-03 7.303389e-04 2.724152e-04 3.911608e-03 4.094046e-06 
##           40          281          715          862           69 
## 9.322414e-03 8.616696e-05 1.719591e-04 3.933893e-05 1.219147e-03 
##          499          307          809          401          604 
## 8.462187e-04 1.241725e-03 1.209752e-05 5.836609e-04 1.136439e-01 
##          571          466          834          859          404 
## 4.128946e-03 1.759041e-03 1.509052e-02 2.449903e-04 4.886670e-04 
##          436          135          442          759          327 
## 4.499324e-04 2.313665e-04 2.968133e-03 6.108686e-05 1.968203e-03 
##          957          301           76          118           14 
## 3.018496e-04 3.251468e-04 6.520765e-05 1.906176e-04 1.393007e-02 
##          672          952          786          152          110 
## 2.402822e-06 2.186191e-04 5.928423e-05 1.284944e-04 4.022327e-03 
##          985          879           59          170          102 
## 1.249528e-04 1.634630e-03 1.998102e-04 6.238495e-05 1.270150e-04 
##          472          468          702          354          353 
## 1.264943e-04 7.271554e-04 7.406006e-06 4.062169e-04 6.367949e-04 
##           50          242          408           16          210 
## 2.403633e-02 1.315999e-04 9.120171e-05 2.781762e-04 2.345618e-05 
##          904          244           21          649          372 
## 3.963531e-05 2.088363e-05 1.639276e-05 1.538410e-05 7.477388e-04 
##          419          684          903          481          297 
## 5.135852e-05 5.163546e-03 2.029668e-05 4.188128e-05 4.833436e-04 
##          927          890          757          700          974 
## 1.259465e-03 4.976906e-05 2.816042e-05 4.029541e-06 1.587072e-04 
##          685          533          584          667         1029 
## 4.753951e-06 7.859150e-06 2.111943e-03 3.745920e-04 2.501961e-04 
##          942          954          821          723          402 
## 1.649327e-03 3.124905e-04 1.722576e-05 3.504721e-05 1.806377e-03 
##          356          520          246          997          215 
## 2.666767e-03 3.391387e-04 4.726376e-05 1.653690e-03 7.316026e-05 
##           10          981          588         1003          929 
## 2.484697e-04 2.373999e-05 6.449482e-06 1.063173e-03 2.110675e-04 
##           55          695          296           71          239 
## 7.077857e-06 4.485703e-06 1.686326e-04 3.241693e-03 1.864185e-05 
##          898          849         1001          612          394 
## 6.478532e-03 6.855930e-05 2.957457e-03 1.624364e-05 4.840563e-03 
##          126           98          751          150          772 
## 1.906176e-04 4.460336e-04 1.644203e-03 1.979809e-04 1.492388e-04 
##          648          162          577          203          841 
## 9.917729e-06 3.770425e-05 1.918913e-05 2.596594e-03 3.976332e-04 
##          432          884          764          754          475 
## 9.340120e-05 4.741668e-04 1.420193e-04 5.230494e-05 5.966805e-03 
##          450          506          474          991           95 
## 3.875007e-03 1.509749e-04 1.417626e-04 1.527264e-02 4.669427e-04 
##          384          544          548          390          518 
## 2.621729e-04 9.169743e-06 2.079315e-05 1.796777e-03 8.303043e-05 
##          895          634          934          910          856 
## 9.118641e-04 2.411974e-05 3.127030e-04 7.920178e-05 2.320253e-03 
##          977          717          237           63          797 
## 1.649327e-03 3.484388e-06 4.651226e-03 5.585140e-04 1.470908e-05 
##          883          789          978           80          115 
## 3.440639e-04 9.354898e-05 5.712585e-04 9.226105e-03 1.656323e-03 
##          558          585          631          142          773 
## 1.835700e-04 7.527265e-04 3.634000e-05 5.507813e-05 2.981834e-04 
##          696          655          156          282          913 
## 2.348387e-06 4.339027e-05 4.599243e-04 2.351366e-04 9.477420e-04 
##          230           38            1          743          185 
## 3.107552e-05 3.243121e-03 3.313814e-04 4.393268e-04 1.507757e-05 
##          295          709          969          557          441 
## 1.043677e-04 1.092169e-04 4.799987e-04 9.016718e-05 4.430423e-05 
##          422          678          346          418          407 
## 1.524998e-04 4.807132e-04 3.328071e-03 3.378235e-05 1.119189e-04 
##           99          359          832          483          370 
## 5.364850e-05 8.693280e-04 2.851556e-05 4.188128e-05 1.826254e-04 
##          741          666          204          888          182 
## 2.916765e-03 1.372712e-04 2.119433e-05 3.273759e-05 3.745190e-05 
##          337          316          478          482          238 
## 8.892942e-04 9.506944e-04 3.065238e-04 4.188128e-05 3.641495e-03 
##         1022          458           33          535          300 
## 2.357164e-03 2.055834e-03 3.780360e-06 1.984070e-03 2.355993e-04 
##          123          146          186          511          137 
## 1.906176e-04 5.925942e-05 2.427818e-05 1.062703e-04 3.521696e-04 
##          711          323          393          911           42 
## 1.681442e-03 1.004634e-03 2.137946e-03 1.597328e-04 1.280426e-01 
##          687          828          116          406          211 
## 3.999700e-03 5.001030e-04 3.406850e-04 3.226254e-05 3.824351e-05 
##          928          453          780          919          813 
## 1.136867e-03 2.668814e-04 8.516878e-06 1.830272e-04 1.337069e-02 
##          491          994          734          385          467 
## 3.910676e-03 3.760948e-04 3.553598e-03 4.285931e-04 2.656211e-03 
##          865          231          178          534          886 
## 2.270576e-03 6.471860e-03 1.303018e-04 1.297805e-04 2.041541e-04 
##          429          894          912          275          433 
## 4.532836e-04 2.907649e-04 1.691885e-03 5.326417e-05 3.461945e-03 
##          939          792          366          784          591 
## 2.272451e-05 4.851191e-07 2.298038e-03 2.380783e-05 1.177112e-05 
##          445          805          339          593          730 
## 3.150305e-04 1.984070e-03 2.484415e-04 4.994094e-06 2.528030e-03 
##          503          161           62            5          391 
## 2.560124e-04 3.429885e-04 1.364422e-05 1.021707e-02 1.452862e-04 
##          332          597          758           54          668 
## 1.355511e-03 3.766896e-04 3.639409e-05 6.804307e-06 1.140878e-06 
##          566          945          443          120          504 
## 1.898494e-04 3.331268e-05 4.482252e-05 3.375693e-04 1.715295e-02 
##          319          342          889          698          151 
## 2.270488e-04 8.588084e-04 2.217589e-04 1.166708e-02 1.177553e-04 
##          902          796          285          130          643 
## 2.348327e-03 4.269918e-04 8.313413e-05 8.137812e-04 6.281043e-05 
##          435          437          727          502          217 
## 3.420419e-03 4.618246e-04 2.752272e-05 1.708013e-02 3.424462e-04 
##          184          937          392          543          627 
## 1.043473e-05 4.608912e-04 5.848143e-04 3.794419e-06 1.757340e-06 
##          553          228          775          476           77 
## 3.978037e-03 2.553943e-02 2.351438e-05 5.966805e-03 9.226105e-03 
##          926          599          213          330          669 
## 2.032264e-03 2.685634e-05 8.510190e-04 3.601309e-03 2.094680e-04
length(which(out>=1))
## [1] 0
# 不存在離群值 #

# 檢測影響點 #
eff <- cooks.distance(model_final)
eff
##          380           18          774          140          970 
## 3.547240e-04 4.196392e-03 1.492388e-04 3.384995e-04 7.471040e-04 
##          562          762          287         1015          462 
## 1.538546e-04 1.574881e-02 4.022226e-04 1.956532e-03 5.915088e-03 
##          998           41          114          143          677 
## 3.760821e-04 9.770760e-08 3.953719e-03 9.617852e-05 8.843760e-07 
##          183          420          241          251          746 
## 1.218328e-04 1.587436e-04 4.451319e-05 4.990092e-05 1.772489e-03 
##          653          313          838          364           88 
## 3.947945e-05 5.312155e-04 6.303636e-04 2.383976e-04 3.769154e-03 
##          351          600          944           61         1005 
## 2.940844e-03 3.462082e-05 1.399343e-04 2.343146e-04 1.627259e-04 
##          267          352          541          199          906 
## 2.866059e-03 1.687980e-03 2.511337e-05 4.314204e-05 4.320809e-04 
##           78          341          989          712          255 
## 3.056833e-03 1.507875e-03 2.713072e-05 1.611634e-04 8.524177e-05 
##          873          347          471          845          582 
## 3.344879e-05 1.933157e-03 1.264943e-04 1.819274e-03 1.782559e-05 
##           29          681          896          750          175 
## 5.145186e-04 6.638953e-06 1.754726e-03 3.037894e-03 3.745190e-05 
##          278          375          650          438          413 
## 1.929518e-03 5.131578e-05 6.354516e-05 4.514876e-03 1.856253e-04 
##          208          367          660          580         1011 
## 1.025748e-03 1.393901e-03 7.951873e-05 3.799832e-04 1.302648e-03 
##          656          536          309          400          542 
## 6.356163e-06 2.937745e-04 1.677868e-04 9.271661e-04 1.396936e-04 
##          644          767          837          201          719 
## 1.314802e-04 3.221897e-04 3.968950e-04 1.017796e-04 8.670852e-03 
##          688          368          590          294          990 
## 5.744896e-07 6.589726e-04 3.434902e-06 7.243223e-05 2.754373e-03 
##          552          338          484          900          498 
## 3.014786e-05 3.852543e-04 4.697680e-05 3.269939e-04 3.834478e-04 
##          383          947          701          850          716 
## 1.087921e-03 4.635764e-04 1.677575e-03 2.721778e-04 1.830369e-06 
##          479          779          713          933          492 
## 6.134084e-03 3.523377e-05 1.593385e-05 4.460470e-03 5.777672e-04 
##          907          586          526           64          697 
## 7.508706e-04 1.492988e-04 5.107309e-03 4.418050e-03 6.810503e-07 
##          108          427          164           13          940 
## 6.700332e-04 5.659049e-05 1.432417e-05 1.362828e-02 3.086843e-04 
##          249          606          315          922          683 
## 2.330735e-05 2.789418e-06 6.315487e-04 1.197402e-04 1.983613e-04 
##          983          431          946           89          141 
## 3.160276e-04 4.795368e-05 3.268102e-04 7.159582e-03 5.925942e-05 
##          971          344          421          763          568 
## 1.644719e-03 4.132215e-04 1.346441e-04 1.329401e-04 2.290010e-04 
##         1020          628          403          861          572 
## 2.801459e-03 4.340707e-06 8.236015e-04 1.140357e-03 2.328336e-05 
##          523          941          592          638          988 
## 3.180997e-04 1.454227e-05 3.070979e-04 2.489767e-04 7.654103e-05 
##         1013          373           81          817          651 
## 2.370291e-03 1.241440e-03 5.009563e-03 2.470275e-03 2.002250e-06 
##           66          714          686          322          109 
## 5.499378e-06 1.346430e-06 2.564769e-04 2.235343e-03 7.782677e-04 
##          206          358          995           47         1024 
## 4.738235e-05 5.626052e-04 6.233288e-04 3.693417e-04 5.471219e-04 
##           57          676          967          691          742 
## 6.072134e-06 1.811411e-05 3.998407e-05 5.670793e-06 4.454466e-04 
##          675          177          361          463          731 
## 8.993544e-05 3.745190e-05 2.387908e-03 1.842550e-03 3.860280e-05 
##          528          374          165          415          561 
## 5.338807e-03 3.370978e-05 1.262431e-05 1.987533e-05 4.464723e-04 
##          736           23          252          524          583 
## 3.368944e-06 4.747819e-03 1.346500e-04 3.180997e-04 1.627071e-03 
##         1004          706          822          171           39 
## 7.386259e-04 5.549886e-05 2.949141e-05 2.320159e-06 2.247442e-02 
##         1012          243          876          603          539 
## 1.081356e-03 3.455882e-03 2.203792e-05 1.544039e-02 4.454466e-04 
##          891          836          615           45          318 
## 3.346809e-04 2.405319e-04 1.006279e-02 2.695624e-04 6.669926e-04 
##          973          220          560          986          570 
## 8.130924e-05 3.357562e-05 5.139138e-05 4.358820e-04 3.452052e-05 
##          930          987           60          770          454 
## 1.334887e-03 4.113892e-03 1.543074e-04 3.860280e-05 1.231404e-04 
##          620          966          766          371          626 
## 1.083791e-01 2.030134e-05 2.037748e-04 2.835088e-04 2.198591e-06 
##           91          333          489          855          456 
## 3.769154e-03 4.383306e-04 3.595930e-03 1.081472e-03 4.409808e-03 
##          924           84          781          529          513 
## 8.680172e-05 4.969241e-03 1.100019e-05 1.101925e-04 4.856533e-04 
##          867          519          728          335          636 
## 5.847541e-04 2.752711e-03 5.928423e-05 4.402799e-04 4.229057e-05 
##          381          811          870          915          984 
## 2.307309e-03 3.504721e-05 5.327585e-05 5.539412e-04 2.030134e-05 
##          869         1010          694          982          617 
## 7.999214e-04 7.102765e-03 6.093453e-05 1.810835e-04 2.335072e-06 
##          749          920          905          579            4 
## 2.452240e-03 3.021585e-04 3.527328e-05 2.762211e-05 3.893472e-06 
##          932          396           30          444          782 
## 5.110350e-04 2.600111e-04 2.656441e-06 7.574841e-05 2.474131e-05 
##          921            6          292          682          324 
## 2.029668e-05 1.653566e-07 2.457652e-03 5.492833e-06 5.693905e-04 
##           44           53          963          550          369 
## 3.640328e-03 9.510675e-03 3.231908e-04 1.479791e-04 1.305011e-04 
##          349           86          864          551          574 
## 4.255491e-04 3.769154e-03 4.288271e-04 3.230364e-06 7.909510e-06 
##          148          517          795           72          440 
## 1.206348e-05 1.098454e-05 4.050768e-06 9.226105e-03 9.175031e-05 
##          258         1000          470           87          607 
## 2.264000e-03 4.083765e-03 2.330916e-03 3.729191e-03 5.004306e-06 
##          664          516           36          703          190 
## 2.851930e-05 9.396078e-06 9.377296e-05 1.675169e-05 1.478348e-05 
##          521          259          624          117          738 
## 3.798477e-04 7.020480e-05 3.096136e-05 8.743768e-04 1.517818e-05 
##          755          494          610          196          449 
## 1.197220e-06 9.218522e-05 1.085581e-01 5.877790e-05 1.320222e-03 
##         1018          525          689          885          191 
## 1.255177e-03 5.107309e-03 1.875523e-05 1.427763e-04 2.439882e-05 
##          657          288          409          500          745 
## 1.684610e-06 2.505741e-03 1.077262e-04 5.103407e-04 2.489858e-05 
##          530          455          509          512          846 
## 1.101925e-04 1.766141e-03 2.003823e-04 9.147394e-03 1.039252e-03 
##          336          853          125          601          173 
## 1.603295e-03 7.224785e-03 4.606287e-05 5.781795e-05 5.359154e-05 
##          284          578          147           73          459 
## 5.689864e-05 2.570808e-04 2.082377e-04 1.243038e-02 1.408832e-03 
##          860          527          961          138          168 
## 6.877821e-04 5.338807e-03 6.413309e-03 7.916627e-04 9.642105e-07 
##          887          976          803          131          155 
## 4.692353e-03 9.212678e-04 1.297805e-04 2.853392e-04 1.284944e-04 
##          623          848          378           46          328 
## 1.198744e-05 1.524751e-04 4.969118e-03 3.860280e-05 6.596009e-04 
##          658          430           93          793          918 
## 2.933507e-04 2.731231e-05 7.509049e-04 1.017500e-05 2.398428e-05 
##          575          302          350          908          257 
## 8.205912e-06 9.444602e-04 5.879476e-04 1.622436e-03 3.502399e-03 
##          248          901          810          705          314 
## 2.762872e-03 2.201904e-04 1.584747e-05 1.240527e-06 4.569383e-04 
##          465          179          842          247          854 
## 1.079414e-03 3.745190e-05 1.662847e-04 1.331171e-04 1.331018e-03 
##          761          979          567          158          729 
## 7.521059e-04 3.788302e-03 1.220349e-05 7.525044e-05 7.281273e-04 
##          159          280          340          799          556 
## 2.385823e-05 5.593818e-05 3.149424e-04 1.921181e-03 5.891009e-04 
##          735          826          632          581          788 
## 2.521253e-03 1.461438e-03 7.878098e-05 1.240217e-04 4.444618e-05 
##          299          820         1028          223          122 
## 1.854893e-04 9.019190e-08 1.420445e-04 1.286628e-03 1.935128e-05 
##          163          760          802          200         1007 
## 1.000263e-04 1.805788e-04 1.054932e-04 6.258529e-05 2.555555e-04 
##          943          269          412          290          609 
## 1.204389e-05 4.843549e-05 2.162170e-04 5.251890e-05 5.570251e-03 
##          868          642          718          670          804 
## 9.103047e-04 1.371273e-05 1.466827e-06 5.029648e-03 2.937745e-04 
##          176          134          791          216          892 
## 2.363075e-05 3.521696e-04 6.406692e-04 1.186471e-04 1.938807e-04 
##          153          365          968          835          493 
## 2.936423e-04 3.211655e-04 3.456098e-05 4.903950e-04 6.128967e-04 
##          414          916          310          598           56 
## 3.911650e-05 3.981008e-03 2.116008e-04 2.323331e-05 5.831801e-08 
##          909           34          181          376          263 
## 1.999738e-05 9.944153e-06 5.135944e-06 8.800839e-05 2.215618e-03 
##          665           75          844          722          794 
## 2.821283e-06 5.975886e-03 2.912046e-03 1.584747e-05 1.035987e-02 
##          154         1027          360          880          188 
## 9.313970e-05 5.343768e-05 1.167825e-03 1.254664e-05 3.540951e-03 
##          996          227           24          236           92 
## 5.060542e-05 1.187851e-02 1.143331e-06 6.368271e-03 1.544637e-03 
##          654          229          508          936          679 
## 3.584488e-06 2.108492e-05 7.867881e-03 3.362770e-05 1.483491e-05 
##          167          540          645          732          222 
## 1.621457e-05 1.461438e-03 1.838563e-04 4.444618e-05 1.821178e-04 
##          461            9          778          616          776 
## 1.411991e-03 1.105010e-03 1.565428e-05 1.069527e-01 4.962268e-05 
##         1006          410          602          806          618 
## 6.516696e-05 1.689836e-04 7.108623e-04 1.578956e-04 1.032382e-04 
##          416          877          326          357           85 
## 3.272481e-04 3.424225e-04 3.609469e-03 1.476253e-03 7.120082e-03 
##          629          871          824          559          965 
## 3.197245e-06 1.326567e-04 1.766053e-05 7.137826e-03 2.379298e-03 
##          753          283           17          881          495 
## 7.042736e-04 1.896898e-03 1.736486e-06 1.427763e-04 9.241016e-05 
##          878           26          112          452          522 
## 1.410968e-05 1.029721e-05 5.491133e-04 2.163754e-03 1.589133e-03 
##          950           90          662           11          955 
## 1.624677e-03 2.613292e-04 4.483539e-05 1.604236e-05 1.751137e-04 
##          825          563          219          613          240 
## 4.638091e-04 7.540846e-04 2.221260e-05 6.046233e-06 2.720524e-05 
##          160          405          980          733          446 
## 1.284944e-04 2.505079e-04 4.125095e-05 9.354898e-05 2.402881e-03 
##          833          348          487          447           31 
## 2.602184e-03 7.303389e-04 2.724152e-04 3.911608e-03 4.094046e-06 
##           40          281          715          862           69 
## 9.322414e-03 8.616696e-05 1.719591e-04 3.933893e-05 1.219147e-03 
##          499          307          809          401          604 
## 8.462187e-04 1.241725e-03 1.209752e-05 5.836609e-04 1.136439e-01 
##          571          466          834          859          404 
## 4.128946e-03 1.759041e-03 1.509052e-02 2.449903e-04 4.886670e-04 
##          436          135          442          759          327 
## 4.499324e-04 2.313665e-04 2.968133e-03 6.108686e-05 1.968203e-03 
##          957          301           76          118           14 
## 3.018496e-04 3.251468e-04 6.520765e-05 1.906176e-04 1.393007e-02 
##          672          952          786          152          110 
## 2.402822e-06 2.186191e-04 5.928423e-05 1.284944e-04 4.022327e-03 
##          985          879           59          170          102 
## 1.249528e-04 1.634630e-03 1.998102e-04 6.238495e-05 1.270150e-04 
##          472          468          702          354          353 
## 1.264943e-04 7.271554e-04 7.406006e-06 4.062169e-04 6.367949e-04 
##           50          242          408           16          210 
## 2.403633e-02 1.315999e-04 9.120171e-05 2.781762e-04 2.345618e-05 
##          904          244           21          649          372 
## 3.963531e-05 2.088363e-05 1.639276e-05 1.538410e-05 7.477388e-04 
##          419          684          903          481          297 
## 5.135852e-05 5.163546e-03 2.029668e-05 4.188128e-05 4.833436e-04 
##          927          890          757          700          974 
## 1.259465e-03 4.976906e-05 2.816042e-05 4.029541e-06 1.587072e-04 
##          685          533          584          667         1029 
## 4.753951e-06 7.859150e-06 2.111943e-03 3.745920e-04 2.501961e-04 
##          942          954          821          723          402 
## 1.649327e-03 3.124905e-04 1.722576e-05 3.504721e-05 1.806377e-03 
##          356          520          246          997          215 
## 2.666767e-03 3.391387e-04 4.726376e-05 1.653690e-03 7.316026e-05 
##           10          981          588         1003          929 
## 2.484697e-04 2.373999e-05 6.449482e-06 1.063173e-03 2.110675e-04 
##           55          695          296           71          239 
## 7.077857e-06 4.485703e-06 1.686326e-04 3.241693e-03 1.864185e-05 
##          898          849         1001          612          394 
## 6.478532e-03 6.855930e-05 2.957457e-03 1.624364e-05 4.840563e-03 
##          126           98          751          150          772 
## 1.906176e-04 4.460336e-04 1.644203e-03 1.979809e-04 1.492388e-04 
##          648          162          577          203          841 
## 9.917729e-06 3.770425e-05 1.918913e-05 2.596594e-03 3.976332e-04 
##          432          884          764          754          475 
## 9.340120e-05 4.741668e-04 1.420193e-04 5.230494e-05 5.966805e-03 
##          450          506          474          991           95 
## 3.875007e-03 1.509749e-04 1.417626e-04 1.527264e-02 4.669427e-04 
##          384          544          548          390          518 
## 2.621729e-04 9.169743e-06 2.079315e-05 1.796777e-03 8.303043e-05 
##          895          634          934          910          856 
## 9.118641e-04 2.411974e-05 3.127030e-04 7.920178e-05 2.320253e-03 
##          977          717          237           63          797 
## 1.649327e-03 3.484388e-06 4.651226e-03 5.585140e-04 1.470908e-05 
##          883          789          978           80          115 
## 3.440639e-04 9.354898e-05 5.712585e-04 9.226105e-03 1.656323e-03 
##          558          585          631          142          773 
## 1.835700e-04 7.527265e-04 3.634000e-05 5.507813e-05 2.981834e-04 
##          696          655          156          282          913 
## 2.348387e-06 4.339027e-05 4.599243e-04 2.351366e-04 9.477420e-04 
##          230           38            1          743          185 
## 3.107552e-05 3.243121e-03 3.313814e-04 4.393268e-04 1.507757e-05 
##          295          709          969          557          441 
## 1.043677e-04 1.092169e-04 4.799987e-04 9.016718e-05 4.430423e-05 
##          422          678          346          418          407 
## 1.524998e-04 4.807132e-04 3.328071e-03 3.378235e-05 1.119189e-04 
##           99          359          832          483          370 
## 5.364850e-05 8.693280e-04 2.851556e-05 4.188128e-05 1.826254e-04 
##          741          666          204          888          182 
## 2.916765e-03 1.372712e-04 2.119433e-05 3.273759e-05 3.745190e-05 
##          337          316          478          482          238 
## 8.892942e-04 9.506944e-04 3.065238e-04 4.188128e-05 3.641495e-03 
##         1022          458           33          535          300 
## 2.357164e-03 2.055834e-03 3.780360e-06 1.984070e-03 2.355993e-04 
##          123          146          186          511          137 
## 1.906176e-04 5.925942e-05 2.427818e-05 1.062703e-04 3.521696e-04 
##          711          323          393          911           42 
## 1.681442e-03 1.004634e-03 2.137946e-03 1.597328e-04 1.280426e-01 
##          687          828          116          406          211 
## 3.999700e-03 5.001030e-04 3.406850e-04 3.226254e-05 3.824351e-05 
##          928          453          780          919          813 
## 1.136867e-03 2.668814e-04 8.516878e-06 1.830272e-04 1.337069e-02 
##          491          994          734          385          467 
## 3.910676e-03 3.760948e-04 3.553598e-03 4.285931e-04 2.656211e-03 
##          865          231          178          534          886 
## 2.270576e-03 6.471860e-03 1.303018e-04 1.297805e-04 2.041541e-04 
##          429          894          912          275          433 
## 4.532836e-04 2.907649e-04 1.691885e-03 5.326417e-05 3.461945e-03 
##          939          792          366          784          591 
## 2.272451e-05 4.851191e-07 2.298038e-03 2.380783e-05 1.177112e-05 
##          445          805          339          593          730 
## 3.150305e-04 1.984070e-03 2.484415e-04 4.994094e-06 2.528030e-03 
##          503          161           62            5          391 
## 2.560124e-04 3.429885e-04 1.364422e-05 1.021707e-02 1.452862e-04 
##          332          597          758           54          668 
## 1.355511e-03 3.766896e-04 3.639409e-05 6.804307e-06 1.140878e-06 
##          566          945          443          120          504 
## 1.898494e-04 3.331268e-05 4.482252e-05 3.375693e-04 1.715295e-02 
##          319          342          889          698          151 
## 2.270488e-04 8.588084e-04 2.217589e-04 1.166708e-02 1.177553e-04 
##          902          796          285          130          643 
## 2.348327e-03 4.269918e-04 8.313413e-05 8.137812e-04 6.281043e-05 
##          435          437          727          502          217 
## 3.420419e-03 4.618246e-04 2.752272e-05 1.708013e-02 3.424462e-04 
##          184          937          392          543          627 
## 1.043473e-05 4.608912e-04 5.848143e-04 3.794419e-06 1.757340e-06 
##          553          228          775          476           77 
## 3.978037e-03 2.553943e-02 2.351438e-05 5.966805e-03 9.226105e-03 
##          926          599          213          330          669 
## 2.032264e-03 2.685634e-05 8.510190e-04 3.601309e-03 2.094680e-04
# 檢測標準 #
# 計算影響點個數 #
qf(0.5,7,720-7)
## [1] 0.9074005
length(which(as.vector(eff) > qf(0.5,7,720-7)))
## [1] 0
#畫ROC曲線
pred <- prediction(result, concrete_test$over400)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
#計算AUC
auc <- performance(pred, "auc")

#畫圖
plot(perf, col = rainbow(5), main = "ROC curve", xlab = "1 - Specificity(FPR)", ylab = "Sensitivity(TPR)")

abline(0, 1)
#實際AUC值
text(0.5, 0.5,paste0("AUC= ",as.character(auc@y.values[[1]])))

# 將全部資料投入最適模型找最適合係數 #
model_final <- glm(formula = over400 ~ Cement+ Blast+ FlyAsh+ Water+ Superplasticizer
                   + Age, family = binomial(link = "logit"), data =concrete, na.action = na.exclude)
summary(model_final)
## 
## Call:
## glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Age, family = binomial(link = "logit"), data = concrete, 
##     na.action = na.exclude)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.3739  -0.6005  -0.3207   0.5575   2.7022  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -2.349277   1.139323  -2.062   0.0392 *  
## Cement            0.015100   0.001259  11.992  < 2e-16 ***
## Blast             0.010384   0.001374   7.556 4.17e-14 ***
## FlyAsh            0.009697   0.002197   4.414 1.01e-05 ***
## Water            -0.029783   0.005688  -5.236 1.64e-07 ***
## Superplasticizer  0.061294   0.024703   2.481   0.0131 *  
## Age               0.024043   0.002278  10.552  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1353.2  on 1028  degrees of freedom
## Residual deviance:  836.6  on 1022  degrees of freedom
## AIC: 850.6
## 
## Number of Fisher Scoring iterations: 5