library(Deriv)
library(Ryacas)
library(rootSolve)
library(mosaic)
\((\frac {64x*y^{-2}}{x^{-2}*y})^{^-1/2}\)
\((\frac {64x^{^-3}}{y^3})^{^-1/2}\)
\((\frac {y^{-3}}{64x^{^3}})\)
\(f(x) = \sqrt x+5\)
\(g(x) = \frac{3}{x}\)
\(f(x)*g(x) = \frac{3}{x} \sqrt x+5\)
\(R(x) = 24.2x - 0.2x^2\)
\(C(x) = 13x + 14\)
\(breakeven condition: r(x) = c(x)\)
\(24.2x -0.2x^2 = 13x + 147\)
\(0.2x^2 - 11.2 x + 147 = 0\)
\(x ~ 21, 35\)
library(rootSolve)
par(mfrow=c(1,1))
fx <- function(x){-0.2*x^2+11.2*x-147}
s <- seq(0,50,by=1)
a <- fx(s)
roots <- uniroot.all(fx, c(0,100))
plot(a~s,type='l')
points(roots, rep(0,length(roots)), col='blue',pch=15)
myf1=function(x)9*x**8.2
Deriv(myf1)
## function (x)
## 73.8 * x^7.2
myf1=function(x)-4*x**5 - 3*x**4 - 4*x**3 - 3
Deriv(myf1)
## function (x)
## -(x^2 * (3 * (4 + x * (3 + 4 * x)) + x * (3 + 8 * x)))
myf1=function(t)(4264^2-(2*t)^2)^(1/2)
myf1 <- Deriv(myf1)
myf1
## function (t)
## -(4 * (t/sqrt(18181696 - (2 * t)^2)))
myf1=function(x)(3*x^8-x^5)/(-2*x^8+2)
Deriv(myf1)
## function (x)
## {
## .e1 <- x^8
## .e2 <- 2 - 2 * .e1
## .e3 <- x^3
## x^4 * ((16 * (.e1/.e2) + 5) * (3 * .e3 - 1) + 9 * .e3)/.e2
## }
library(rootSolve)
par(mfrow=c(2,2))
fx=function(x){4*x+25*x^-1}
s=seq(-10,10,by=.1)
a=fx(s)
plot(a~s,type="l")
dfx = Deriv(fx)
s=seq(-10,10,by=.1)
b=dfx(s)
plot(b~s)
a=uniroot.all(dfx, c(-5,5))
points(a, rep(0, length(a)), col='blue', pch=21)
myf1=function(x)-9*(-3*x^3+3*x+6)^7+7*(-3*x^3+3*x+6)+ 4
Deriv(myf1)(x=1)
## [1] 17635926
myf1=function(x)(x+5)*(x+4)^2
myf2 <- Deriv(myf1)
dx2 <- Deriv(myf2)
myf2
## function (x)
## (2 * (5 + x) + 4 + x) * (4 + x)
myf1=function(x) -7*x^2-84*x-140
dmyf1 <- Deriv(myf1)
dmyf2 <- Deriv(dmyf1)
dmyf2
## function (x)
## -14
myf1=function(x) 0.6*x+1500/x
myf1=function(x)18*x/log(x^4)
Deriv(myf1)
## function (x)
## {
## .e1 <- 4 * log(x)
## 18 * 1/.e1 - 72/.e1^2
## }
myf1=function(x)-5*x^3*exp(x)
myf2 <- Deriv(myf1)
myf2
## function (x)
## -(5 * (x^2 * (3 + x) * exp(x)))
myf3 <- Deriv(myf2)
myf3
## function (x)
## -(5 * (x * ((2 + x) * (3 + x) + x) * exp(x)))
myf1=function(x)8*((8*x+5)^2)^(1/3)
integrate(Vectorize(myf1), -3, 1)
## 124.2966 with absolute error < 0.002
myf1=function(x) 298/(sqrt(x))
integrate(Vectorize(myf1), 137, 232)
## 2102 with absolute error < 2.3e-11
myf1=function(x)(4*x-3)^(1/2)
a <- Deriv(myf1)
b <- Deriv(a)
c <- Deriv(b)
d <- Deriv(c)
e <- Deriv(d)
a(1)
## [1] 2
b(1)/prod(1:2)
## [1] -2
c(1)/prod(1:3)
## [1] 4
d(1)/prod(1:4)
## [1] 0.04166667
e(1)/prod(1:5)
## [1] 0