Aranda N. Alfredo
# reading datasets from website NOAA
library(readr)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.4.3
stormdata <- read_csv("stormdata.csv")
## Parsed with column specification:
## cols(
## .default = col_character(),
## STATE__ = col_double(),
## COUNTY = col_double(),
## BGN_RANGE = col_double(),
## COUNTY_END = col_double(),
## END_RANGE = col_double(),
## LENGTH = col_double(),
## WIDTH = col_double(),
## F = col_integer(),
## MAG = col_double(),
## FATALITIES = col_double(),
## INJURIES = col_double(),
## PROPDMG = col_double(),
## CROPDMG = col_double(),
## LATITUDE = col_double(),
## LONGITUDE = col_double(),
## LATITUDE_E = col_double(),
## LONGITUDE_ = col_double(),
## REFNUM = col_double()
## )
## See spec(...) for full column specifications.
stormDataNew <- data.frame(as.character(stormdata$EVTYPE),stormdata$FATALITIES,stormdata$INJURIES, stormdata$PROPDMG)
colnames(stormDataNew) <- c("EVTYPE","FATALITIES","INJURIES","PROPDMG")
Fatalities<- aggregate(FATALITIES ~ EVTYPE,stormDataNew, sum)
Fatalities<-Fatalities[Fatalities$FATALITIES>(mean(Fatalities$FATALITIES)),]
ggplot(aes(x=EVTYPE,y=FATALITIES),data=Fatalities)+
geom_bar(stat = "identity",aes(fill = -FATALITIES))+
coord_flip() +
theme(text = element_text(size=9),axis.text.x=element_text(angle=90, hjust=1))+
labs(title="Total Fatalities by type of Storm", x="", y="Total Fatalities")
Injuries<- aggregate(INJURIES ~ EVTYPE,stormDataNew, sum)
Injuries<-Injuries[Injuries$INJURIES>(mean(Injuries$INJURIES)),]
ggplot(aes(x=EVTYPE,y=INJURIES),data=Injuries)+
geom_bar(stat = "identity",aes(fill = -INJURIES))+
coord_flip() +
theme(text = element_text(size=9),axis.text.x=element_text(angle=90, hjust=1))+
labs(title="Total Injuries by type of Storm", x="", y="Total Injuries")
Havening this result, Tornado storms are most harmful phenomenon.
ecoda<-stormdata[stormdata$PROPDMG>0&stormdata$PROPDMGEXP %in% c("K","M","B"),c("EVTYPE","PROPDMG","PROPDMGEXP")]
multi<-data.frame(PROPDMGEXP=c("K","M","B"),multiplier=c(1000,1000000,1000000000))
ecoda<-merge(ecoda,multi,by= "PROPDMGEXP")
ecoda$DAMAGE<-ecoda$PROPDMG*ecoda$multi/1000000000
ecodamage<- aggregate(DAMAGE ~ EVTYPE,ecoda, sum)
ecodamage<-ecodamage[ecodamage$DAMAGE>(mean(ecodamage$DAMAGE)),]
ggplot(aes(x=EVTYPE,,y=DAMAGE),data=ecodamage)+
geom_bar(stat = "identity",aes(fill = -DAMAGE))+
coord_flip() +
theme(axis.text.x=element_text(angle=90, hjust=1)) +
labs(title="Total Damage($ billion) by type of Storm", x="", y="Total Damages")