summary statistics (e.g. mean, standard deviation, median, mode) for the important variables in the dataset.

library(psych)
describe(deandilema)
##                     vars   n      mean        sd    median   trimmed
## SlNo                   1 391    196.00    113.02    196.00    196.00
## Gender*                2 391      1.68      0.47      2.00      1.72
## Gender.B               3 391      0.32      0.47      0.00      0.28
## Percent_SSC            4 391     64.65     10.96     64.50     64.76
## Board_SSC*             5 391      2.23      0.87      3.00      2.28
## Board_CBSE             6 391      0.29      0.45      0.00      0.24
## Board_ICSE             7 391      0.20      0.40      0.00      0.12
## Percent_HSC            8 391     63.80     11.42     63.00     63.34
## Board_HSC*             9 391      2.39      0.85      3.00      2.48
## Stream_HSC*           10 391      2.34      0.56      2.00      2.36
## Percent_Degree        11 391     62.98      8.92     63.00     62.91
## Course_Degree*        12 391      3.85      1.61      4.00      3.81
## Degree_Engg           13 391      0.09      0.29      0.00      0.00
## Experience_Yrs        14 391      0.48      0.67      0.00      0.36
## Entrance_Test*        15 391      5.85      1.35      6.00      6.08
## S.TEST                16 391      0.83      0.38      1.00      0.91
## Percentile_ET         17 391     54.93     31.17     62.00     56.87
## S.TEST.SCORE          18 391     54.93     31.17     62.00     56.87
## Percent_MBA           19 391     61.67      5.85     61.01     61.45
## Specialization_MBA*   20 391      1.47      0.56      1.00      1.42
## Marks_Communication   21 391     60.54      8.82     58.00     59.68
## Marks_Projectwork     22 391     68.36      7.15     69.00     68.60
## Marks_BOCA            23 391     64.38      9.58     63.00     64.08
## Placement*            24 391      1.80      0.40      2.00      1.87
## Placement_B           25 391      0.80      0.40      1.00      0.87
## Salary                26 391 219078.26 138311.65 240000.00 217011.50
##                          mad   min       max     range  skew kurtosis
## SlNo                  145.29  1.00    391.00    390.00  0.00    -1.21
## Gender*                 0.00  1.00      2.00      1.00 -0.75    -1.45
## Gender.B                0.00  0.00      1.00      1.00  0.75    -1.45
## Percent_SSC            12.60 37.00     87.20     50.20 -0.06    -0.72
## Board_SSC*              0.00  1.00      3.00      2.00 -0.45    -1.53
## Board_CBSE              0.00  0.00      1.00      1.00  0.93    -1.14
## Board_ICSE              0.00  0.00      1.00      1.00  1.52     0.31
## Percent_HSC            13.34 40.00     94.70     54.70  0.29    -0.67
## Board_HSC*              0.00  1.00      3.00      2.00 -0.83    -1.13
## Stream_HSC*             0.00  1.00      3.00      2.00 -0.12    -0.72
## Percent_Degree          8.90 35.00     89.00     54.00  0.05     0.24
## Course_Degree*          1.48  1.00      7.00      6.00  0.00    -1.08
## Degree_Engg             0.00  0.00      1.00      1.00  2.76     5.63
## Experience_Yrs          0.00  0.00      3.00      3.00  1.27     1.17
## Entrance_Test*          0.00  1.00      9.00      8.00 -2.52     7.04
## S.TEST                  0.00  0.00      1.00      1.00 -1.74     1.02
## Percentile_ET          25.20  0.00     98.69     98.69 -0.74    -0.69
## S.TEST.SCORE           25.20  0.00     98.69     98.69 -0.74    -0.69
## Percent_MBA             6.39 50.83     77.89     27.06  0.34    -0.52
## Specialization_MBA*     0.00  1.00      3.00      2.00  0.70    -0.56
## Marks_Communication     8.90 50.00     88.00     38.00  0.74    -0.25
## Marks_Projectwork       7.41 50.00     87.00     37.00 -0.26    -0.27
## Marks_BOCA             11.86 50.00     96.00     46.00  0.29    -0.85
## Placement*              0.00  1.00      2.00      1.00 -1.48     0.19
## Placement_B             0.00  0.00      1.00      1.00 -1.48     0.19
## Salary              88956.00  0.00 940000.00 940000.00  0.24     1.74
##                          se
## SlNo                   5.72
## Gender*                0.02
## Gender.B               0.02
## Percent_SSC            0.55
## Board_SSC*             0.04
## Board_CBSE             0.02
## Board_ICSE             0.02
## Percent_HSC            0.58
## Board_HSC*             0.04
## Stream_HSC*            0.03
## Percent_Degree         0.45
## Course_Degree*         0.08
## Degree_Engg            0.01
## Experience_Yrs         0.03
## Entrance_Test*         0.07
## S.TEST                 0.02
## Percentile_ET          1.58
## S.TEST.SCORE           1.58
## Percent_MBA            0.30
## Specialization_MBA*    0.03
## Marks_Communication    0.45
## Marks_Projectwork      0.36
## Marks_BOCA             0.48
## Placement*             0.02
## Placement_B            0.02
## Salary              6994.72

median salary of all the students in the data sample

median(deandilema$Salary)
## [1] 240000

table showing the mean Salary of males and females who were placed

placed <- deandilema[deandilema$Placement_B==1,]
avgsal <- aggregate(placed$Salary,by = list(Gender = placed$Gender),mean)
avgsal
##   Gender        x
## 1      F 253068.0
## 2      M 284241.9

Histogram of MBA performance of students who were placed

hist(placed$Percent_MBA, 
     main = "MBA Performance of placed students",
     xlab = "MBA percentage",
     col = "grey", breaks = 2
     )

# Creating notplaced data frame of students not placed (Tasks 3g and 3h)

notplaced.df <- deandilema[which(deandilema$Placement_B == '0'), ]
View(notplaced.df)

Creating notplaced data frame of students not placed (Tasks 3g and 3h)

notplaced <- deandilema[which(deandilema$Placement_B == '0'), ]
View(notplaced.df)
# creating hostograms of MBA performance of placed and not placed students
par(mfrow=c(1,2))
with(placed, hist(placed$Percent_MBA, main = "Placed students", breaks = 2, xlab = "MBA percentage"))
with(notplaced, hist(notplaced$Percent_MBA, main = "Not placed", breaks = 2, xlab = "MBA percentage"))

# Now Creating box plots

library(lattice)
bwplot(Gender ~ Salary, data = placed, horizontal = TRUE, xlab = "Income", main = "Comparision of Male and Female Salaries who are placed")

#Creating data frame placedET and creating the Scatterplot (Tasks 3j and 3k)

placedET.df <- deandilema[ which(deandilema$Placement_B == '1' & deandilema$S.TEST == '1'), ]
View(placedET.df)
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplotMatrix(formula = ~ Salary + Percent_MBA + Percentile_ET, data = placedET.df, main = "Scatter Plot Matrix")