R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. ## Reading Titanic Dataset

2b. First we need to import the Dean’s Dilemma.csv file into R dataframe:

setwd("F:/Data Analytics for Managerial Applications")
mba.df <- read.csv(paste("Data - Deans Dilemma.csv", sep = ""))
View(mba.df)

Summary

2c. To summarize the dataset:

summary(mba.df)
##       SlNo       Gender     Gender.B       Percent_SSC     Board_SSC  
##  Min.   :  1.0   F:127   Min.   :0.0000   Min.   :37.00   CBSE  :113  
##  1st Qu.: 98.5   M:264   1st Qu.:0.0000   1st Qu.:56.00   ICSE  : 77  
##  Median :196.0           Median :0.0000   Median :64.50   Others:201  
##  Mean   :196.0           Mean   :0.3248   Mean   :64.65               
##  3rd Qu.:293.5           3rd Qu.:1.0000   3rd Qu.:74.00               
##  Max.   :391.0           Max.   :1.0000   Max.   :87.20               
##                                                                       
##    Board_CBSE      Board_ICSE      Percent_HSC    Board_HSC  
##  Min.   :0.000   Min.   :0.0000   Min.   :40.0   CBSE  : 96  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:54.0   ISC   : 48  
##  Median :0.000   Median :0.0000   Median :63.0   Others:247  
##  Mean   :0.289   Mean   :0.1969   Mean   :63.8               
##  3rd Qu.:1.000   3rd Qu.:0.0000   3rd Qu.:72.0               
##  Max.   :1.000   Max.   :1.0000   Max.   :94.7               
##                                                              
##     Stream_HSC  Percent_Degree                Course_Degree
##  Arts    : 18   Min.   :35.00   Arts                 : 13  
##  Commerce:222   1st Qu.:57.52   Commerce             :117  
##  Science :151   Median :63.00   Computer Applications: 32  
##                 Mean   :62.98   Engineering          : 37  
##                 3rd Qu.:69.00   Management           :163  
##                 Max.   :89.00   Others               :  5  
##                                 Science              : 24  
##   Degree_Engg      Experience_Yrs   Entrance_Test     S.TEST      
##  Min.   :0.00000   Min.   :0.0000   MAT    :265   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   None   : 67   1st Qu.:1.0000  
##  Median :0.00000   Median :0.0000   K-MAT  : 24   Median :1.0000  
##  Mean   :0.09463   Mean   :0.4783   CAT    : 22   Mean   :0.8286  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   PGCET  :  8   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :3.0000   GCET   :  2   Max.   :1.0000  
##                                     (Other):  3                   
##  Percentile_ET    S.TEST.SCORE    Percent_MBA   
##  Min.   : 0.00   Min.   : 0.00   Min.   :50.83  
##  1st Qu.:41.19   1st Qu.:41.19   1st Qu.:57.20  
##  Median :62.00   Median :62.00   Median :61.01  
##  Mean   :54.93   Mean   :54.93   Mean   :61.67  
##  3rd Qu.:78.00   3rd Qu.:78.00   3rd Qu.:66.02  
##  Max.   :98.69   Max.   :98.69   Max.   :77.89  
##                                                 
##            Specialization_MBA Marks_Communication Marks_Projectwork
##  Marketing & Finance:222      Min.   :50.00       Min.   :50.00    
##  Marketing & HR     :156      1st Qu.:53.00       1st Qu.:64.00    
##  Marketing & IB     : 13      Median :58.00       Median :69.00    
##                               Mean   :60.54       Mean   :68.36    
##                               3rd Qu.:67.00       3rd Qu.:74.00    
##                               Max.   :88.00       Max.   :87.00    
##                                                                    
##    Marks_BOCA         Placement    Placement_B        Salary      
##  Min.   :50.00   Not Placed: 79   Min.   :0.000   Min.   :     0  
##  1st Qu.:57.00   Placed    :312   1st Qu.:1.000   1st Qu.:172800  
##  Median :63.00                    Median :1.000   Median :240000  
##  Mean   :64.38                    Mean   :0.798   Mean   :219078  
##  3rd Qu.:72.50                    3rd Qu.:1.000   3rd Qu.:300000  
##  Max.   :96.00                    Max.   :1.000   Max.   :940000  
## 
library(psych)
describe(mba.df)
##                     vars   n      mean        sd    median   trimmed
## SlNo                   1 391    196.00    113.02    196.00    196.00
## Gender*                2 391      1.68      0.47      2.00      1.72
## Gender.B               3 391      0.32      0.47      0.00      0.28
## Percent_SSC            4 391     64.65     10.96     64.50     64.76
## Board_SSC*             5 391      2.23      0.87      3.00      2.28
## Board_CBSE             6 391      0.29      0.45      0.00      0.24
## Board_ICSE             7 391      0.20      0.40      0.00      0.12
## Percent_HSC            8 391     63.80     11.42     63.00     63.34
## Board_HSC*             9 391      2.39      0.85      3.00      2.48
## Stream_HSC*           10 391      2.34      0.56      2.00      2.36
## Percent_Degree        11 391     62.98      8.92     63.00     62.91
## Course_Degree*        12 391      3.85      1.61      4.00      3.81
## Degree_Engg           13 391      0.09      0.29      0.00      0.00
## Experience_Yrs        14 391      0.48      0.67      0.00      0.36
## Entrance_Test*        15 391      5.85      1.35      6.00      6.08
## S.TEST                16 391      0.83      0.38      1.00      0.91
## Percentile_ET         17 391     54.93     31.17     62.00     56.87
## S.TEST.SCORE          18 391     54.93     31.17     62.00     56.87
## Percent_MBA           19 391     61.67      5.85     61.01     61.45
## Specialization_MBA*   20 391      1.47      0.56      1.00      1.42
## Marks_Communication   21 391     60.54      8.82     58.00     59.68
## Marks_Projectwork     22 391     68.36      7.15     69.00     68.60
## Marks_BOCA            23 391     64.38      9.58     63.00     64.08
## Placement*            24 391      1.80      0.40      2.00      1.87
## Placement_B           25 391      0.80      0.40      1.00      0.87
## Salary                26 391 219078.26 138311.65 240000.00 217011.50
##                          mad   min       max     range  skew kurtosis
## SlNo                  145.29  1.00    391.00    390.00  0.00    -1.21
## Gender*                 0.00  1.00      2.00      1.00 -0.75    -1.45
## Gender.B                0.00  0.00      1.00      1.00  0.75    -1.45
## Percent_SSC            12.60 37.00     87.20     50.20 -0.06    -0.72
## Board_SSC*              0.00  1.00      3.00      2.00 -0.45    -1.53
## Board_CBSE              0.00  0.00      1.00      1.00  0.93    -1.14
## Board_ICSE              0.00  0.00      1.00      1.00  1.52     0.31
## Percent_HSC            13.34 40.00     94.70     54.70  0.29    -0.67
## Board_HSC*              0.00  1.00      3.00      2.00 -0.83    -1.13
## Stream_HSC*             0.00  1.00      3.00      2.00 -0.12    -0.72
## Percent_Degree          8.90 35.00     89.00     54.00  0.05     0.24
## Course_Degree*          1.48  1.00      7.00      6.00  0.00    -1.08
## Degree_Engg             0.00  0.00      1.00      1.00  2.76     5.63
## Experience_Yrs          0.00  0.00      3.00      3.00  1.27     1.17
## Entrance_Test*          0.00  1.00      9.00      8.00 -2.52     7.04
## S.TEST                  0.00  0.00      1.00      1.00 -1.74     1.02
## Percentile_ET          25.20  0.00     98.69     98.69 -0.74    -0.69
## S.TEST.SCORE           25.20  0.00     98.69     98.69 -0.74    -0.69
## Percent_MBA             6.39 50.83     77.89     27.06  0.34    -0.52
## Specialization_MBA*     0.00  1.00      3.00      2.00  0.70    -0.56
## Marks_Communication     8.90 50.00     88.00     38.00  0.74    -0.25
## Marks_Projectwork       7.41 50.00     87.00     37.00 -0.26    -0.27
## Marks_BOCA             11.86 50.00     96.00     46.00  0.29    -0.85
## Placement*              0.00  1.00      2.00      1.00 -1.48     0.19
## Placement_B             0.00  0.00      1.00      1.00 -1.48     0.19
## Salary              88956.00  0.00 940000.00 940000.00  0.24     1.74
##                          se
## SlNo                   5.72
## Gender*                0.02
## Gender.B               0.02
## Percent_SSC            0.55
## Board_SSC*             0.04
## Board_CBSE             0.02
## Board_ICSE             0.02
## Percent_HSC            0.58
## Board_HSC*             0.04
## Stream_HSC*            0.03
## Percent_Degree         0.45
## Course_Degree*         0.08
## Degree_Engg            0.01
## Experience_Yrs         0.03
## Entrance_Test*         0.07
## S.TEST                 0.02
## Percentile_ET          1.58
## S.TEST.SCORE           1.58
## Percent_MBA            0.30
## Specialization_MBA*    0.03
## Marks_Communication    0.45
## Marks_Projectwork      0.36
## Marks_BOCA             0.48
## Placement*             0.02
## Placement_B            0.02
## Salary              6994.72

Median Salary

3a. To calculate the median salary of all students in the data sample:

median(mba.df[,"Salary"])
## [1] 240000

Therefore, the median salary is 240000.

Percentage of placed students

3b. To calculate the percentage of students who were placed:

prop.table(table(mba.df$Placement))*100
## 
## Not Placed     Placed 
##    20.2046    79.7954

Therefore, the percentage of students who were placed = 79.79%.

Subset of only placed students

3c. To create a subset of only placed students:

placed <- mba.df[which(mba.df$Placement == 'Placed'),]
View(placed)

The View() helps us crosscheck that the placed dataframe has the desired values i.e. only of students who were placed.

Median Salary of only placed students

3d. To calculate the median salary of only placed students, we check the median salary in the placed dataframe:

median(placed[,"Salary"])
## [1] 260000

Thus, we see, that since the unplaced students’ records are not considered, the median salary rises to 260000/-.

Mean Salary of males and females who were placed

3e. To create a table that displays the mean salaries by gender:

aggregate(placed$Salary,by = list(sex = placed$Gender), mean)
##   sex        x
## 1   F 253068.0
## 2   M 284241.9

Therefore, we can see that the 2 row table lists the mean salaries for each gender. We have used the placed dataframe to consider only the placed candidates.

Histogram of MBA performance of placed students

3f. To create a histogram to show the performance of MBA students who were places:

hist(placed$Percent_MBA, xlab = "MBA Percentage",ylab = "Count",main = "MBA performance of placed students",breaks = 3,col = "grey")

The histogram is generated as desired.

Subset of only unplaced MBA students

3g. To create a subset of only unplaced students:

notplaced <- mba.df[which(mba.df$Placement == 'Not Placed'),]
View(notplaced)

The View() helps us crosscheck that the placed dataframe has the desired values i.e. only of students who were not placed.

Side by side histograms of placed and unplaced students

3h. To split the screen and display the histograms for MBA performance of placed and unplaced students:

par(mfrow = c(1,2))
hist(placed$Percent_MBA, xlab = "MBA Percentage",ylab = "Count",main = "MBA performance of placed students",breaks = 3,col = "grey")
hist(notplaced$Percent_MBA, xlab = "MBA Percentage",ylab = "Count",main = "MBA performance of not placed students",breaks = 3,col = "grey")

The histograms are generated side-by-side as desired.

Boxplot to compare salaries of males and females

3i. To create two boxplots showing the comparison of salaries of males and females:

##str(placed)
boxplot(placed$Salary ~ placed$Gender, horizontal = TRUE, yaxt = "n", ylab = "Gender", xlab = "Salary", las =1, main = "Comparison of salaries of males and females")
axis(side = 2, at=c(1,2), labels = c("Females","Males"))

The boxplots share the same axis and are helpful to compare data like median salaries, IQRs for males and females etc.

Dataframe for placed candidates who gave an MBA entrance test

3j. To create a dataframe “placedET” that contains the data for all candidates who were placed AND gave an MBA entrance test prior to admission to the MBA program:

placedET <- placed[which(placed$Placement == "Placed" & placed$S.TEST > 0),]
View(placedET)

As we note, there are 261 candidates who fulfil both the criterias.

Scatter Plot Matrix

3k. To create a scatterplot matrix for 3 variables - Salary, Percent_MBA, Percentile_ET - of placedET dataframe:

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplotMatrix(formula = ~ Salary + Percent_MBA + Percentile_ET, main = "Scatter Plot Matrix", cex = 0.8, data = placedET, diagonal = "density", spread = FALSE)