Q1
titanic.df <- read.csv(paste("C:/Users/kogentix/Downloads/Internship docs/week1/Titanic Data.csv", sep=""))
#View(titanic.df)
tempTP <- titanic.df[,1]
length(tempTP)
## [1] 889
Q2
library(psych)
table(titanic.df$Survived=="1")
##
## FALSE TRUE
## 549 340
Q3
prop.table(table(titanic.df$Survived=="1"))*100
##
## FALSE TRUE
## 61.75478 38.24522
Q4
table<-xtabs(~Survived+Pclass,data=titanic.df)
table
## Pclass
## Survived 1 2 3
## 0 80 97 372
## 1 134 87 119
Q5
prop.table(xtabs(~Survived+Pclass,data=titanic.df))*100
## Pclass
## Survived 1 2 3
## 0 8.998875 10.911136 41.844769
## 1 15.073116 9.786277 13.385827
Q6
table<-xtabs(~Sex+Pclass+Survived,data=titanic.df)
ftable(table)
## Survived 0 1
## Sex Pclass
## female 1 3 89
## 2 6 70
## 3 72 72
## male 1 77 45
## 2 91 17
## 3 300 47
Q7
table<-xtabs(~Sex+Survived,data = titanic.df)
prop.table(table,2)*100
## Survived
## Sex 0 1
## female 14.75410 67.94118
## male 85.24590 32.05882
Q8
prop.table(table,1)*100
## Survived
## Sex 0 1
## female 25.96154 74.03846
## male 81.10919 18.89081
Q9
chisq.test(table)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table
## X-squared = 258.43, df = 1, p-value < 2.2e-16