title: “BM Hotels Data Analysis”
output: html_notebook

READING AND DESCRIBING DATA

Read the Data

BMHotelsData.df <- read.csv(paste("HotelsData34CitiesData.csv"))
colnames(BMHotelsData.df)
##  [1] "CityName"              "Population"           
##  [3] "IsTourist"             "Day"                  
##  [5] "Date"                  "IsWeekend"            
##  [7] "HotelName"             "Available"            
##  [9] "MaxRentUSD"            "RentUSD"              
## [11] "StarRating"            "GuestRating"          
## [13] "HotelAddress"          "HotelPincode"         
## [15] "HotelDescription"      "FreeWifi"             
## [17] "FreeBreakfast"         "HotelCapacity"        
## [19] "HasSwimmingPool"       "IsMarriott"           
## [21] "IsHilton"              "IsMarriottOrHilton"   
## [23] "MedianHomeValue"       "MedianHouseHoldIncome"

Conversion of dataframe

BMHotelsData.df$IsTourist <- as.factor(BMHotelsData.df$IsTourist)

BMHotelsData.df$IsWeekend <- as.factor(BMHotelsData.df$IsWeekend)
BMHotelsData.df$Available <- as.factor(BMHotelsData.df$Available)
BMHotelsData.df$StarRating <- as.factor(BMHotelsData.df$StarRating)
BMHotelsData.df$FreeWifi <- as.factor(BMHotelsData.df$FreeWifi)
BMHotelsData.df$FreeBreakfast <- as.factor(BMHotelsData.df$FreeBreakfast)
BMHotelsData.df$HasSwimmingPool <- as.factor(BMHotelsData.df$HasSwimmingPool)
BMHotelsData.df$IsMarriott <- as.factor(BMHotelsData.df$IsMarriott)
BMHotelsData.df$IsHilton <- as.factor(BMHotelsData.df$IsHilton)
BMHotelsData.df$IsMarriottOrHilton <- as.factor(BMHotelsData.df$IsMarriottOrHilton)
BMHotelsData.df$MedianHouseHoldIncome <- as.integer(BMHotelsData.df$MedianHouseHoldIncome)
BMHotelsData.df$CityName <- as.factor(BMHotelsData.df$CityName)
attach(BMHotelsData.df)
dim(BMHotelsData.df)    ## 17030 rows, 24 columns
## [1] 17030    24
unique(BMHotelsData.df$CityName)
##  [1] Tampa         New York City Cleveland     Milwaukee     Nashville    
##  [6] Jacksonville  Louisville    New Orleans   Los Angeles   Fresno       
## [11] St. Louis     Memphis       Philadelphia  Kansas City   Niagara Falls
## [16] Las Vegas     San Antonio   Houston       Tucson        Buffalo      
## [21] Boston        Phoenix       Seattle       Albuquerque   Asheville    
## [26] San Francisco Arlington     Baltimore     Columbus      San Jose     
## [31] Chicago       Lake Tahoe    Anaheim       Maui         
## 34 Levels: Albuquerque Anaheim Arlington Asheville Baltimore ... Tucson

Unique hotels Name and zipCodes

#### Group 1 -- Group 1
length(unique(BMHotelsData.df$HotelName))   # 1691 unique hotels          
## [1] 1691
length(unique(BMHotelsData.df$HotelPincode))   # 593 unique zip code
## [1] 593

Descriptive statistics

library(psych)
describe(BMHotelsData.df)[, c(1:9)]
##                       vars     n        mean           sd   median
## CityName*                1 17030       17.38         9.73     17.0
## Population               2 17030 29404198.02 152326494.83 595047.0
## IsTourist*               3 17030        1.41         0.49      1.0
## Day*                     4 17030        4.10         2.17      4.0
## Date*                    5 17030        5.50         2.87      6.0
## IsWeekend*               6 17030        1.30         0.46      1.0
## HotelName*               7 17030      843.36       488.88    843.0
## Available*               8 17030        1.93         0.25      2.0
## MaxRentUSD               9 17030      200.41       290.38    153.0
## RentUSD                 10 17030      156.81       265.78    119.0
## StarRating*             11 17030        5.33         1.92      5.0
## GuestRating             12 17030        5.16         2.03      4.4
## HotelAddress*           13 17030     1328.31       776.84   1326.0
## HotelPincode            14 17030    59675.59     30176.62  64150.0
## HotelDescription*       15 17030      744.70       423.69    761.0
## FreeWifi*               16 17030        1.93         0.25      2.0
## FreeBreakfast*          17 17030        1.47         0.50      1.0
## HotelCapacity           18 17030      177.28       268.87    118.0
## HasSwimmingPool*        19 17030        1.58         0.49      2.0
## IsMarriott*             20 17030        1.09         0.29      1.0
## IsHilton*               21 17030        1.06         0.24      1.0
## IsMarriottOrHilton*     22 17030        1.16         0.37      1.0
## MedianHomeValue         23 17030   320125.92    275396.36 219100.0
## MedianHouseHoldIncome   24 17030    54279.95     23455.73  51250.0
##                         trimmed       mad   min       max
## CityName*                 17.35     11.86     1        34
## Population            696034.82 392952.75 21717 840600000
## IsTourist*                 1.39      0.00     1         2
## Day*                       4.12      2.97     1         7
## Date*                      5.50      2.97     1        10
## IsWeekend*                 1.25      0.00     1         2
## HotelName*               843.03    628.62     1      1691
## Available*                 2.00      0.00     1         2
## MaxRentUSD               164.20     87.47     1      9280
## RentUSD                  128.77     63.75     4      9280
## StarRating*                5.18      1.48     1        10
## GuestRating                4.96      1.04     1        10
## HotelAddress*           1331.38   1037.08     1      2620
## HotelPincode           61360.03  38598.01  2108     98198
## HotelDescription*        747.01    538.18     1      1474
## FreeWifi*                  2.00      0.00     1         2
## FreeBreakfast*             1.47      0.00     1         2
## HotelCapacity            134.40     85.99     1      4028
## HasSwimmingPool*           1.60      0.00     1         2
## IsMarriott*                1.00      0.00     1         2
## IsHilton*                  1.00      0.00     1         2
## IsMarriottOrHilton*        1.07      0.00     1         2
## MedianHomeValue       268171.56 157896.90  2800   2308300
## MedianHouseHoldIncome  51929.32  20796.43  2930    168036
str(BMHotelsData.df)
## 'data.frame':    17030 obs. of  24 variables:
##  $ CityName             : Factor w/ 34 levels "Albuquerque",..: 33 33 33 33 33 33 33 33 33 33 ...
##  $ Population           : int  377165 377165 377165 377165 377165 377165 377165 377165 377165 377165 ...
##  $ IsTourist            : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Day                  : Factor w/ 7 levels "Friday","Monday",..: 7 5 1 3 4 2 6 7 5 1 ...
##  $ Date                 : Factor w/ 10 levels "Dec 1 2017","Dec 2 2017",..: 9 10 1 2 3 4 5 6 7 8 ...
##  $ IsWeekend            : Factor w/ 2 levels "0","1": 1 1 2 2 1 1 1 1 1 2 ...
##  $ HotelName            : Factor w/ 1691 levels "1840s Carrollton Inn, Baltimore",..: 705 705 705 705 705 705 705 705 705 705 ...
##  $ Available            : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ MaxRentUSD           : num  244 244 244 244 244 244 244 244 244 244 ...
##  $ RentUSD              : num  119 119 153 244 119 102 139 119 123 157 ...
##  $ StarRating           : Factor w/ 10 levels "1","1.5","2",..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ GuestRating          : num  4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 ...
##  $ HotelAddress         : Factor w/ 2620 levels "0570 W 151st Street, Olathe, KS",..: 2452 2452 2452 2452 2452 2452 2452 2452 2452 2452 ...
##  $ HotelPincode         : int  33610 33610 33610 33610 33610 33610 33610 33610 33610 33610 ...
##  $ HotelDescription     : Factor w/ 1474 levels ""," Motel with outdoor pool, near Heavenly Ski Resort",..: 865 865 865 865 865 865 865 865 865 865 ...
##  $ FreeWifi             : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ FreeBreakfast        : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ HotelCapacity        : int  76 76 76 76 76 76 76 76 76 76 ...
##  $ HasSwimmingPool      : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ IsMarriott           : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ IsHilton             : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ IsMarriottOrHilton   : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ MedianHomeValue      : int  92300 92300 92300 92300 92300 92300 92300 92300 92300 92300 ...
##  $ MedianHouseHoldIncome: int  2930 2930 2930 2930 2930 2930 2930 2930 2930 2930 ...
summary(BMHotelsData.df
        )
##           CityName       Population        IsTourist        Day      
##  Kansas City  :  720   Min.   :    21717   0:10060   Friday   :3408  
##  New York City:  580   1st Qu.:   377165   1: 6970   Monday   :1703  
##  Buffalo      :  550   Median :   595047             Saturday :1704  
##  Lake Tahoe   :  540   Mean   : 29404198             Sunday   :1703  
##  Las Vegas    :  540   3rd Qu.:   880619             Thursday :3406  
##  Boston       :  510   Max.   :840600000             Tuesday  :1704  
##  (Other)      :13590                                 Wednesday:3402  
##          Date      IsWeekend                            HotelName    
##  Dec 8 2017:1708   0:11902   Americas Best Value Inn         :   40  
##  Dec 2 2017:1703   1: 5128   Americas Best Value Inn & Suites:   20  
##  Dec 3 2017:1703             Clarion Hotel                   :   20  
##  Dec 4 2017:1703             Comfort Inn Downtown            :   20  
##  Dec 5 2017:1703             Country Inn & Suites By Carlson :   20  
##  Dec 6 2017:1703             Days Inn                        :   20  
##  (Other)   :6807             (Other)                         :16890  
##  Available   MaxRentUSD        RentUSD         StarRating  
##  0: 1170   Min.   :   1.0   Min.   :   4.0   3      :4064  
##  1:15860   1st Qu.:  99.0   1st Qu.:  80.0   2.5    :4036  
##            Median : 153.0   Median : 119.0   3.5    :2578  
##            Mean   : 200.4   Mean   : 156.8   4      :2461  
##            3rd Qu.: 229.0   3rd Qu.: 179.0   2      :2400  
##            Max.   :9280.0   Max.   :9280.0   4.5    : 712  
##                                              (Other): 779  
##   GuestRating    
##  Min.   : 1.000  
##  1st Qu.: 3.900  
##  Median : 4.400  
##  Mean   : 5.163  
##  3rd Qu.: 7.000  
##  Max.   :10.000  
##                  
##                                                                            HotelAddress  
##  111 West Adams Street, Chicago, IL, 60603, United States of America             :   20  
##  1230 N Old World Third St, Milwaukee, WI, 53212, United States of America       :   20  
##  145 E Harmon Ave                                                                :   20  
##  210 Franklin St, Buffalo, NY, 14202, United States of America                   :   20  
##  2575 S Kihei Rd, Kihei, HI, 96753, United States of America                     :   20  
##  3110 N Blackstone Ave, Fresno, CA, 93703, United States of America, 866-925-8648:   20  
##  (Other)                                                                         :16910  
##   HotelPincode  
##  Min.   : 2108  
##  1st Qu.:33612  
##  Median :64150  
##  Mean   :59676  
##  3rd Qu.:89109  
##  Max.   :98198  
##                 
##                                                                HotelDescription
##  No-frills Fresno motel with outdoor pool                              :   71  
##  Motel with outdoor pool, near Disney California Adventure® Park       :   70  
##  4-star hotel with restaurant, near Westfield San Francisco Centre     :   60  
##  No-frills Tampa hotel with outdoor pool                               :   60  
##  3-star hotel with outdoor pool, near Disney California Adventure® Park:   50  
##  4-star hotel with restaurant, near Millennium Park                    :   50  
##  (Other)                                                               :16669  
##  FreeWifi  FreeBreakfast HotelCapacity    HasSwimmingPool IsMarriott
##  0: 1121   0:8980        Min.   :   1.0   0:7152          0:15480   
##  1:15909   1:8050        1st Qu.:  69.0   1:9878          1: 1550   
##                          Median : 118.0                             
##                          Mean   : 177.3                             
##                          3rd Qu.: 199.0                             
##                          Max.   :4028.0                             
##                                                                     
##  IsHilton  IsMarriottOrHilton MedianHomeValue   MedianHouseHoldIncome
##  0:16022   0:14326            Min.   :   2800   Min.   :  2930       
##  1: 1008   1: 2704            1st Qu.: 142400   1st Qu.: 37246       
##                               Median : 219100   Median : 51250       
##                               Mean   : 320126   Mean   : 54280       
##                               3rd Qu.: 406900   3rd Qu.: 65678       
##                               Max.   :2308300   Max.   :168036       
## 
table(BMHotelsData.df$IsTourist)
## 
##     0     1 
## 10060  6970
table(BMHotelsData.df$IsWeekend)
## 
##     0     1 
## 11902  5128
table(BMHotelsData.df$HasSwimmingPool)
## 
##    0    1 
## 7152 9878
table(BMHotelsData.df$FreeWifi)
## 
##     0     1 
##  1121 15909
table(BMHotelsData.df$FreeBreakfast)
## 
##    0    1 
## 8980 8050

Regression

OLS regression with INTERACTIONS

Model <- log(RentUSD) ~ HotelCapacity + MaxRentUSD + GuestRating + HasSwimmingPool + FreeBreakfast + IsTourist + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + CityName +IsMarriott*HotelCapacity+IsMarriott*HasSwimmingPool+IsMarriott*FreeBreakfast+IsMarriott*IsTourist+IsMarriott*IsWeekend+IsMarriott*MedianHomeValue+IsMarriott*MedianHouseHoldIncome + IsMarriott*MaxRentUSD + IsMarriott*GuestRating

fitOLS<- lm(Model, data = BMHotelsData.df)

summary(fitOLS)
## 
## Call:
## lm(formula = Model, data = BMHotelsData.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7266 -0.1967 -0.0081  0.1977  4.7087 
## 
## Coefficients: (1 not defined because of singularities)
##                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)                        3.389e+00  2.008e-02 168.787  < 2e-16
## HotelCapacity                      1.738e-04  1.085e-05  16.020  < 2e-16
## MaxRentUSD                         1.541e-03  1.629e-05  94.631  < 2e-16
## GuestRating                        2.089e-01  3.312e-03  63.077  < 2e-16
## HasSwimmingPool1                  -1.366e-02  6.195e-03  -2.204  0.02751
## FreeBreakfast1                    -4.667e-02  5.790e-03  -8.060 8.14e-16
## IsTourist1                         2.593e-01  2.096e-02  12.371  < 2e-16
## IsWeekend1                         6.853e-02  5.605e-03  12.226  < 2e-16
## IsMarriott1                        6.837e-01  3.515e-02  19.453  < 2e-16
## MedianHomeValue                    3.434e-07  2.329e-08  14.743  < 2e-16
## MedianHouseHoldIncome             -1.335e-06  1.693e-07  -7.882 3.41e-15
## CityNameAnaheim                   -7.397e-01  2.369e-02 -31.217  < 2e-16
## CityNameArlington                  1.700e-01  2.079e-02   8.173 3.22e-16
## CityNameAsheville                  5.908e-02  2.099e-02   2.814  0.00490
## CityNameBaltimore                 -6.293e-01  2.459e-02 -25.593  < 2e-16
## CityNameBoston                    -7.836e-01  2.588e-02 -30.276  < 2e-16
## CityNameBuffalo                    1.556e-01  2.014e-02   7.724 1.19e-14
## CityNameChicago                   -9.096e-01  2.565e-02 -35.469  < 2e-16
## CityNameCleveland                  1.535e-01  2.061e-02   7.446 1.01e-13
## CityNameColumbus                   6.535e-02  2.066e-02   3.163  0.00157
## CityNameFresno                     8.524e-02  2.048e-02   4.162 3.16e-05
## CityNameHouston                    1.962e-01  2.098e-02   9.351  < 2e-16
## CityNameJacksonville               3.417e-01  2.072e-02  16.491  < 2e-16
## CityNameKansas City                1.179e-01  1.905e-02   6.191 6.12e-10
## CityNameLake Tahoe                -1.061e+00  2.372e-02 -44.743  < 2e-16
## CityNameLas Vegas                 -3.721e-01  2.188e-02 -17.006  < 2e-16
## CityNameLos Angeles               -6.180e-01  2.504e-02 -24.684  < 2e-16
## CityNameLouisville                -6.642e-01  2.405e-02 -27.617  < 2e-16
## CityNameMaui                       3.387e-01  2.148e-02  15.770  < 2e-16
## CityNameMemphis                   -3.733e-02  2.101e-02  -1.777  0.07558
## CityNameMilwaukee                  1.342e-01  2.081e-02   6.450 1.15e-10
## CityNameNashville                  4.316e-01  2.042e-02  21.137  < 2e-16
## CityNameNew Orleans               -1.613e-02  2.074e-02  -0.778  0.43685
## CityNameNew York City              1.514e-01  2.073e-02   7.304 2.92e-13
## CityNameNiagara Falls             -3.276e-01  2.146e-02 -15.269  < 2e-16
## CityNamePhiladelphia              -7.521e-01  2.592e-02 -29.018  < 2e-16
## CityNamePhoenix                    4.339e-01  2.098e-02  20.680  < 2e-16
## CityNameSan Antonio                2.506e-01  2.047e-02  12.246  < 2e-16
## CityNameSan Francisco             -1.012e+00  2.916e-02 -34.714  < 2e-16
## CityNameSan Jose                   5.020e-01  2.153e-02  23.318  < 2e-16
## CityNameSeattle                           NA         NA      NA       NA
## CityNameSt. Louis                 -5.572e-01  2.463e-02 -22.621  < 2e-16
## CityNameTampa                      3.052e-01  2.038e-02  14.976  < 2e-16
## CityNameTucson                    -3.507e-03  2.085e-02  -0.168  0.86641
## HotelCapacity:IsMarriott1          3.272e-05  3.986e-05   0.821  0.41177
## HasSwimmingPool1:IsMarriott1      -9.049e-02  2.097e-02  -4.316 1.60e-05
## FreeBreakfast1:IsMarriott1        -6.302e-02  1.982e-02  -3.180  0.00148
## IsTourist1:IsMarriott1            -5.185e-02  2.447e-02  -2.119  0.03413
## IsWeekend1:IsMarriott1            -1.482e-01  1.859e-02  -7.974 1.64e-15
## IsMarriott1:MedianHomeValue        4.133e-07  6.448e-08   6.410 1.49e-10
## IsMarriott1:MedianHouseHoldIncome -9.505e-07  4.829e-07  -1.968  0.04905
## MaxRentUSD:IsMarriott1            -1.039e-03  1.971e-05 -52.681  < 2e-16
## GuestRating:IsMarriott1           -4.788e-02  5.092e-03  -9.403  < 2e-16
##                                      
## (Intercept)                       ***
## HotelCapacity                     ***
## MaxRentUSD                        ***
## GuestRating                       ***
## HasSwimmingPool1                  *  
## FreeBreakfast1                    ***
## IsTourist1                        ***
## IsWeekend1                        ***
## IsMarriott1                       ***
## MedianHomeValue                   ***
## MedianHouseHoldIncome             ***
## CityNameAnaheim                   ***
## CityNameArlington                 ***
## CityNameAsheville                 ** 
## CityNameBaltimore                 ***
## CityNameBoston                    ***
## CityNameBuffalo                   ***
## CityNameChicago                   ***
## CityNameCleveland                 ***
## CityNameColumbus                  ** 
## CityNameFresno                    ***
## CityNameHouston                   ***
## CityNameJacksonville              ***
## CityNameKansas City               ***
## CityNameLake Tahoe                ***
## CityNameLas Vegas                 ***
## CityNameLos Angeles               ***
## CityNameLouisville                ***
## CityNameMaui                      ***
## CityNameMemphis                   .  
## CityNameMilwaukee                 ***
## CityNameNashville                 ***
## CityNameNew Orleans                  
## CityNameNew York City             ***
## CityNameNiagara Falls             ***
## CityNamePhiladelphia              ***
## CityNamePhoenix                   ***
## CityNameSan Antonio               ***
## CityNameSan Francisco             ***
## CityNameSan Jose                  ***
## CityNameSeattle                      
## CityNameSt. Louis                 ***
## CityNameTampa                     ***
## CityNameTucson                       
## HotelCapacity:IsMarriott1            
## HasSwimmingPool1:IsMarriott1      ***
## FreeBreakfast1:IsMarriott1        ** 
## IsTourist1:IsMarriott1            *  
## IsWeekend1:IsMarriott1            ***
## IsMarriott1:MedianHomeValue       ***
## IsMarriott1:MedianHouseHoldIncome *  
## MaxRentUSD:IsMarriott1            ***
## GuestRating:IsMarriott1           ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3199 on 16978 degrees of freedom
## Multiple R-squared:  0.7203, Adjusted R-squared:  0.7195 
## F-statistic: 857.4 on 51 and 16978 DF,  p-value: < 2.2e-16
coef(summary(fitOLS))[, "Std. Error"] 
##                       (Intercept)                     HotelCapacity 
##                      2.008079e-02                      1.085076e-05 
##                        MaxRentUSD                       GuestRating 
##                      1.628825e-05                      3.312455e-03 
##                  HasSwimmingPool1                    FreeBreakfast1 
##                      6.194945e-03                      5.790386e-03 
##                        IsTourist1                        IsWeekend1 
##                      2.095693e-02                      5.605224e-03 
##                       IsMarriott1                   MedianHomeValue 
##                      3.514599e-02                      2.329296e-08 
##             MedianHouseHoldIncome                   CityNameAnaheim 
##                      1.693460e-07                      2.369425e-02 
##                 CityNameArlington                 CityNameAsheville 
##                      2.079468e-02                      2.099244e-02 
##                 CityNameBaltimore                    CityNameBoston 
##                      2.458944e-02                      2.588201e-02 
##                   CityNameBuffalo                   CityNameChicago 
##                      2.014414e-02                      2.564559e-02 
##                 CityNameCleveland                  CityNameColumbus 
##                      2.060980e-02                      2.066200e-02 
##                    CityNameFresno                   CityNameHouston 
##                      2.047783e-02                      2.098448e-02 
##              CityNameJacksonville               CityNameKansas City 
##                      2.072124e-02                      1.904987e-02 
##                CityNameLake Tahoe                 CityNameLas Vegas 
##                      2.371979e-02                      2.187812e-02 
##               CityNameLos Angeles                CityNameLouisville 
##                      2.503592e-02                      2.404999e-02 
##                      CityNameMaui                   CityNameMemphis 
##                      2.148002e-02                      2.100613e-02 
##                 CityNameMilwaukee                 CityNameNashville 
##                      2.081428e-02                      2.042087e-02 
##               CityNameNew Orleans             CityNameNew York City 
##                      2.073896e-02                      2.073453e-02 
##             CityNameNiagara Falls              CityNamePhiladelphia 
##                      2.145722e-02                      2.591934e-02 
##                   CityNamePhoenix               CityNameSan Antonio 
##                      2.098092e-02                      2.046710e-02 
##             CityNameSan Francisco                  CityNameSan Jose 
##                      2.916033e-02                      2.152747e-02 
##                 CityNameSt. Louis                     CityNameTampa 
##                      2.463017e-02                      2.037933e-02 
##                    CityNameTucson         HotelCapacity:IsMarriott1 
##                      2.084938e-02                      3.986195e-05 
##      HasSwimmingPool1:IsMarriott1        FreeBreakfast1:IsMarriott1 
##                      2.096834e-02                      1.982006e-02 
##            IsTourist1:IsMarriott1            IsWeekend1:IsMarriott1 
##                      2.447333e-02                      1.858502e-02 
##       IsMarriott1:MedianHomeValue IsMarriott1:MedianHouseHoldIncome 
##                      6.447718e-08                      4.829222e-07 
##            MaxRentUSD:IsMarriott1           GuestRating:IsMarriott1 
##                      1.971395e-05                      5.092125e-03
EstandSE = coef(summary(fitOLS))[, c("Estimate","Std. Error","Pr(>|t|)")] 

library(data.table)
dt <- data.table(EstandSE)
write.csv(dt, file = "OLSEstimates.csv")

Fgls Regression with all Interactions(IsMariott)

# Step 1: Find lnOLSressq i.e. the Log of the Square of the OLS Residuals
OLSres <- resid(fitOLS)
OLSressq <- OLSres^2  # Square residuals
lnOLSressq <- log(OLSressq) # Take natural log of squared residuals

MOdel1<-lnOLSressq ~  HotelCapacity + MaxRentUSD + GuestRating + HasSwimmingPool + FreeBreakfast + IsTourist + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + CityName +IsMarriott*HotelCapacity+IsMarriott*HasSwimmingPool+IsMarriott*FreeBreakfast+IsMarriott*IsTourist+IsMarriott*IsWeekend+IsMarriott*MedianHomeValue+IsMarriott*MedianHouseHoldIncome + IsMarriott*MaxRentUSD + IsMarriott*GuestRating
 #Auxillary Model

# Step 2: Auxillary Model -- Regress lnOLSressq on the x variables
aux <- lm(MOdel1 , data = BMHotelsData.df)              # Run auxillary model

# Step 3a: Calculate ghat i.e. the fitted values of the Auxillary Model 
ghat <- fitted(aux)                  # Predict g^

# Step 3b: Calculate hhat = exp(ghat)
hhat <- exp(ghat)                    # Create h^

# Step 4: Implement FGLS by running the regression with weights equal to 1/hhat
fGLS <- lm(Model , weights = 1/hhat,data = BMHotelsData.df)   # Weight is 1/h^
summary(fGLS)
## 
## Call:
## lm(formula = Model, data = BMHotelsData.df, weights = 1/hhat)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.191  -1.102   0.038   1.163  38.580 
## 
## Coefficients: (1 not defined because of singularities)
##                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)                        3.438e+00  1.845e-02 186.384  < 2e-16
## HotelCapacity                      8.338e-05  1.160e-05   7.191 6.72e-13
## MaxRentUSD                         2.905e-03  2.511e-05 115.653  < 2e-16
## GuestRating                        1.525e-01  2.634e-03  57.906  < 2e-16
## HasSwimmingPool1                  -9.354e-03  4.885e-03  -1.915 0.055510
## FreeBreakfast1                    -1.819e-02  4.599e-03  -3.956 7.65e-05
## IsTourist1                         2.226e-01  1.808e-02  12.311  < 2e-16
## IsWeekend1                         4.813e-02  4.395e-03  10.950  < 2e-16
## IsMarriott1                        7.932e-01  2.950e-02  26.888  < 2e-16
## MedianHomeValue                    1.987e-07  1.724e-08  11.526  < 2e-16
## MedianHouseHoldIncome             -1.138e-06  1.306e-07  -8.713  < 2e-16
## CityNameAnaheim                   -5.070e-01  1.858e-02 -27.295  < 2e-16
## CityNameArlington                  1.176e-01  2.028e-02   5.797 6.86e-09
## CityNameAsheville                  1.763e-02  1.521e-02   1.159 0.246324
## CityNameBaltimore                 -4.148e-01  2.002e-02 -20.716  < 2e-16
## CityNameBoston                    -5.703e-01  1.784e-02 -31.967  < 2e-16
## CityNameBuffalo                    1.668e-01  1.878e-02   8.882  < 2e-16
## CityNameChicago                   -6.929e-01  2.054e-02 -33.733  < 2e-16
## CityNameCleveland                  1.673e-01  1.771e-02   9.448  < 2e-16
## CityNameColumbus                   1.074e-01  1.785e-02   6.013 1.86e-09
## CityNameFresno                     9.982e-02  1.752e-02   5.699 1.22e-08
## CityNameHouston                    2.075e-01  2.038e-02  10.184  < 2e-16
## CityNameJacksonville               3.149e-01  1.826e-02  17.249  < 2e-16
## CityNameKansas City                1.228e-01  1.792e-02   6.855 7.37e-12
## CityNameLake Tahoe                -8.067e-01  1.908e-02 -42.268  < 2e-16
## CityNameLas Vegas                 -2.846e-01  2.077e-02 -13.704  < 2e-16
## CityNameLos Angeles               -4.283e-01  1.764e-02 -24.279  < 2e-16
## CityNameLouisville                -4.665e-01  1.971e-02 -23.664  < 2e-16
## CityNameMaui                       2.410e-01  1.431e-02  16.842  < 2e-16
## CityNameMemphis                    2.006e-03  2.110e-02   0.095 0.924257
## CityNameMilwaukee                  1.442e-01  1.839e-02   7.843 4.67e-15
## CityNameNashville                  3.273e-01  1.936e-02  16.905  < 2e-16
## CityNameNew Orleans                3.229e-04  1.704e-02   0.019 0.984880
## CityNameNew York City              1.397e-01  1.397e-02   9.996  < 2e-16
## CityNameNiagara Falls             -2.800e-01  1.833e-02 -15.278  < 2e-16
## CityNamePhiladelphia              -5.258e-01  1.851e-02 -28.415  < 2e-16
## CityNamePhoenix                    3.300e-01  2.074e-02  15.913  < 2e-16
## CityNameSan Antonio                1.494e-01  2.405e-02   6.211 5.39e-10
## CityNameSan Francisco             -7.376e-01  2.166e-02 -34.058  < 2e-16
## CityNameSan Jose                   4.405e-01  2.035e-02  21.645  < 2e-16
## CityNameSeattle                           NA         NA      NA       NA
## CityNameSt. Louis                 -3.267e-01  2.175e-02 -15.024  < 2e-16
## CityNameTampa                      2.646e-01  1.865e-02  14.186  < 2e-16
## CityNameTucson                     2.261e-02  2.029e-02   1.114 0.265267
## HotelCapacity:IsMarriott1          1.604e-04  4.459e-05   3.598 0.000321
## HasSwimmingPool1:IsMarriott1      -6.893e-02  1.765e-02  -3.906 9.41e-05
## FreeBreakfast1:IsMarriott1        -7.542e-02  1.578e-02  -4.778 1.78e-06
## IsTourist1:IsMarriott1            -6.232e-02  2.402e-02  -2.595 0.009480
## IsWeekend1:IsMarriott1            -1.289e-01  1.553e-02  -8.295  < 2e-16
## IsMarriott1:MedianHomeValue        6.201e-07  6.016e-08  10.306  < 2e-16
## IsMarriott1:MedianHouseHoldIncome -1.558e-06  3.949e-07  -3.946 7.99e-05
## MaxRentUSD:IsMarriott1            -2.221e-03  3.366e-05 -65.975  < 2e-16
## GuestRating:IsMarriott1           -4.087e-02  3.911e-03 -10.451  < 2e-16
##                                      
## (Intercept)                       ***
## HotelCapacity                     ***
## MaxRentUSD                        ***
## GuestRating                       ***
## HasSwimmingPool1                  .  
## FreeBreakfast1                    ***
## IsTourist1                        ***
## IsWeekend1                        ***
## IsMarriott1                       ***
## MedianHomeValue                   ***
## MedianHouseHoldIncome             ***
## CityNameAnaheim                   ***
## CityNameArlington                 ***
## CityNameAsheville                    
## CityNameBaltimore                 ***
## CityNameBoston                    ***
## CityNameBuffalo                   ***
## CityNameChicago                   ***
## CityNameCleveland                 ***
## CityNameColumbus                  ***
## CityNameFresno                    ***
## CityNameHouston                   ***
## CityNameJacksonville              ***
## CityNameKansas City               ***
## CityNameLake Tahoe                ***
## CityNameLas Vegas                 ***
## CityNameLos Angeles               ***
## CityNameLouisville                ***
## CityNameMaui                      ***
## CityNameMemphis                      
## CityNameMilwaukee                 ***
## CityNameNashville                 ***
## CityNameNew Orleans                  
## CityNameNew York City             ***
## CityNameNiagara Falls             ***
## CityNamePhiladelphia              ***
## CityNamePhoenix                   ***
## CityNameSan Antonio               ***
## CityNameSan Francisco             ***
## CityNameSan Jose                  ***
## CityNameSeattle                      
## CityNameSt. Louis                 ***
## CityNameTampa                     ***
## CityNameTucson                       
## HotelCapacity:IsMarriott1         ***
## HasSwimmingPool1:IsMarriott1      ***
## FreeBreakfast1:IsMarriott1        ***
## IsTourist1:IsMarriott1            ** 
## IsWeekend1:IsMarriott1            ***
## IsMarriott1:MedianHomeValue       ***
## IsMarriott1:MedianHouseHoldIncome ***
## MaxRentUSD:IsMarriott1            ***
## GuestRating:IsMarriott1           ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.705 on 16978 degrees of freedom
## Multiple R-squared:  0.7786, Adjusted R-squared:  0.7779 
## F-statistic:  1171 on 51 and 16978 DF,  p-value: < 2.2e-16
#FGLSEstandSE = coef(summary(fGLS))[, c("Estimate","Std. Error","Pr(>|t|)")] 
#library(data.table)
#dt <- data.table(FGLSEstandSE)
#write.csv(dt, file = "FGLSEstimatesAllcities.csv")

Step wise Regression(Backward Regression)

log-linear (without interactions)

library(MASS)
Model1 <- log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + IsTourist + Available + IsMarriott+ MedianHomeValue + MedianHouseHoldIncome + CityName + IsMarriottOrHilton + GuestRating + MaxRentUSD
fit1<- lm(Model1, data = BMHotelsData.df)
summary(fit1)
## 
## Call:
## lm(formula = Model1, data = BMHotelsData.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2389 -0.2187 -0.0136  0.2030  4.6902 
## 
## Coefficients: (1 not defined because of singularities)
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.671e+00  2.384e-02 153.977  < 2e-16 ***
## HotelCapacity          2.001e-04  1.099e-05  18.206  < 2e-16 ***
## HasSwimmingPool1      -2.446e-02  6.442e-03  -3.797 0.000147 ***
## FreeBreakfast1        -7.082e-02  5.904e-03 -11.995  < 2e-16 ***
## IsTourist1             2.667e-01  2.228e-02  11.974  < 2e-16 ***
## Available1            -3.017e-01  1.100e-02 -27.423  < 2e-16 ***
## IsMarriott1            9.424e-03  1.342e-02   0.702 0.482550    
## MedianHomeValue        5.770e-07  2.413e-08  23.907  < 2e-16 ***
## MedianHouseHoldIncome -2.296e-06  1.724e-07 -13.320  < 2e-16 ***
## CityNameAnaheim       -8.675e-01  2.510e-02 -34.563  < 2e-16 ***
## CityNameArlington      2.086e-01  2.206e-02   9.456  < 2e-16 ***
## CityNameAsheville     -3.032e-02  2.280e-02  -1.330 0.183577    
## CityNameBaltimore     -7.713e-01  2.595e-02 -29.721  < 2e-16 ***
## CityNameBoston        -9.113e-01  2.730e-02 -33.387  < 2e-16 ***
## CityNameBuffalo        1.797e-01  2.140e-02   8.394  < 2e-16 ***
## CityNameChicago       -1.008e+00  2.717e-02 -37.123  < 2e-16 ***
## CityNameCleveland      1.911e-01  2.186e-02   8.742  < 2e-16 ***
## CityNameColumbus       1.036e-01  2.196e-02   4.717 2.41e-06 ***
## CityNameFresno         1.148e-01  2.177e-02   5.273 1.36e-07 ***
## CityNameHouston        2.398e-01  2.225e-02  10.781  < 2e-16 ***
## CityNameJacksonville   3.758e-01  2.205e-02  17.044  < 2e-16 ***
## CityNameKansas City    1.640e-01  2.018e-02   8.128 4.67e-16 ***
## CityNameLake Tahoe    -1.160e+00  2.511e-02 -46.191  < 2e-16 ***
## CityNameLas Vegas     -3.672e-01  2.319e-02 -15.832  < 2e-16 ***
## CityNameLos Angeles   -7.535e-01  2.625e-02 -28.699  < 2e-16 ***
## CityNameLouisville    -7.665e-01  2.539e-02 -30.188  < 2e-16 ***
## CityNameMaui           4.461e-01  2.263e-02  19.716  < 2e-16 ***
## CityNameMemphis       -4.515e-02  2.233e-02  -2.022 0.043240 *  
## CityNameMilwaukee      1.678e-01  2.210e-02   7.594 3.27e-14 ***
## CityNameNashville      5.039e-01  2.168e-02  23.240  < 2e-16 ***
## CityNameNew Orleans   -3.116e-02  2.197e-02  -1.418 0.156207    
## CityNameNew York City  3.041e-01  2.176e-02  13.975  < 2e-16 ***
## CityNameNiagara Falls -3.119e-01  2.279e-02 -13.685  < 2e-16 ***
## CityNamePhiladelphia  -8.657e-01  2.746e-02 -31.531  < 2e-16 ***
## CityNamePhoenix        5.146e-01  2.203e-02  23.361  < 2e-16 ***
## CityNameSan Antonio    3.049e-01  2.174e-02  14.026  < 2e-16 ***
## CityNameSan Francisco -1.239e+00  3.057e-02 -40.518  < 2e-16 ***
## CityNameSan Jose       5.321e-01  2.284e-02  23.301  < 2e-16 ***
## CityNameSeattle               NA         NA      NA       NA    
## CityNameSt. Louis     -7.524e-01  2.719e-02 -27.666  < 2e-16 ***
## CityNameTampa          3.608e-01  2.175e-02  16.592  < 2e-16 ***
## CityNameTucson         1.173e-02  2.218e-02   0.529 0.596864    
## IsMarriottOrHilton1    1.092e-01  1.189e-02   9.185  < 2e-16 ***
## GuestRating            2.384e-01  3.441e-03  69.294  < 2e-16 ***
## MaxRentUSD             8.164e-04  9.832e-06  83.030  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3403 on 16986 degrees of freedom
## Multiple R-squared:  0.6834, Adjusted R-squared:  0.6826 
## F-statistic: 852.6 on 43 and 16986 DF,  p-value: < 2.2e-16
stepAIC(fit1,direction="backward")
## Start:  AIC=-36673.35
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsTourist + Available + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + IsMarriottOrHilton + GuestRating + MaxRentUSD
## 
## 
## Step:  AIC=-36673.35
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     Available + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + IsMarriottOrHilton + GuestRating + MaxRentUSD
## 
##                         Df Sum of Sq    RSS    AIC
## - IsMarriott             1      0.06 1966.8 -36675
## <none>                               1966.7 -36673
## - HasSwimmingPool        1      1.67 1968.4 -36661
## - IsMarriottOrHilton     1      9.77 1976.5 -36591
## - FreeBreakfast          1     16.66 1983.3 -36532
## - MedianHouseHoldIncome  1     20.54 1987.2 -36498
## - HotelCapacity          1     38.38 2005.1 -36346
## - MedianHomeValue        1     66.17 2032.9 -36112
## - Available              1     87.07 2053.8 -35938
## - GuestRating            1    555.95 2522.6 -32436
## - MaxRentUSD             1    798.20 2764.9 -30874
## - CityName              33   1052.08 3018.8 -29442
## 
## Step:  AIC=-36674.85
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     Available + MedianHomeValue + MedianHouseHoldIncome + CityName + 
##     IsMarriottOrHilton + GuestRating + MaxRentUSD
## 
##                         Df Sum of Sq    RSS    AIC
## <none>                               1966.8 -36675
## - HasSwimmingPool        1      1.70 1968.5 -36662
## - FreeBreakfast          1     16.73 1983.5 -36533
## - MedianHouseHoldIncome  1     20.50 1987.2 -36500
## - IsMarriottOrHilton     1     21.43 1988.2 -36492
## - HotelCapacity          1     38.48 2005.2 -36347
## - MedianHomeValue        1     66.15 2032.9 -36114
## - Available              1     87.17 2053.9 -35938
## - GuestRating            1    555.92 2522.7 -32438
## - MaxRentUSD             1    802.58 2769.3 -30849
## - CityName              33   1056.74 3023.5 -29417
## 
## Call:
## lm(formula = log(RentUSD) ~ HotelCapacity + HasSwimmingPool + 
##     FreeBreakfast + Available + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + IsMarriottOrHilton + GuestRating + MaxRentUSD, 
##     data = BMHotelsData.df)
## 
## Coefficients:
##           (Intercept)          HotelCapacity       HasSwimmingPool1  
##             3.671e+00              2.003e-04             -2.466e-02  
##        FreeBreakfast1             Available1        MedianHomeValue  
##            -7.095e-02             -3.018e-01              5.768e-07  
## MedianHouseHoldIncome        CityNameAnaheim      CityNameArlington  
##            -2.292e-06             -6.005e-01              2.088e-01  
##     CityNameAsheville      CityNameBaltimore         CityNameBoston  
##             2.363e-01             -7.712e-01             -6.446e-01  
##       CityNameBuffalo        CityNameChicago      CityNameCleveland  
##             1.794e-01             -7.418e-01              1.912e-01  
##      CityNameColumbus         CityNameFresno        CityNameHouston  
##             1.039e-01              1.148e-01              2.403e-01  
##  CityNameJacksonville    CityNameKansas City     CityNameLake Tahoe  
##             3.755e-01              1.644e-01             -8.928e-01  
##     CityNameLas Vegas    CityNameLos Angeles     CityNameLouisville  
##            -1.006e-01             -4.864e-01             -7.666e-01  
##          CityNameMaui        CityNameMemphis      CityNameMilwaukee  
##             7.133e-01             -4.522e-02              1.682e-01  
##     CityNameNashville    CityNameNew Orleans  CityNameNew York City  
##             5.039e-01              2.360e-01              5.706e-01  
## CityNameNiagara Falls   CityNamePhiladelphia        CityNamePhoenix  
##            -4.486e-02             -5.989e-01              5.152e-01  
##   CityNameSan Antonio  CityNameSan Francisco       CityNameSan Jose  
##             3.050e-01             -9.717e-01              5.323e-01  
##       CityNameSeattle      CityNameSt. Louis          CityNameTampa  
##             2.668e-01             -7.564e-01              3.625e-01  
##        CityNameTucson    IsMarriottOrHilton1            GuestRating  
##             1.197e-02              1.150e-01              2.384e-01  
##            MaxRentUSD  
##             8.168e-04

Model with lower AIC - log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + Available + MedianHomeValue + MedianHouseHoldIncome + CityName + IsMarriottOrHilton + GuestRating + MaxRentUSD

fgls of above

# Step 1: Find lnOLSressq i.e. the Log of the Square of the OLS Residuals
OLSres <- resid(fit1)
OLSressq <- OLSres^2  # Square residuals
lnOLSressq <- log(OLSressq) # Take natural log of squared residuals

MOdela<-lnOLSressq ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + IsTourist + Available + IsMarriott+ MedianHomeValue + MedianHouseHoldIncome + CityName + IsMarriottOrHilton + GuestRating + MaxRentUSD
 #Auxillary Model

# Step 2: Auxillary Model -- Regress lnOLSressq on the x variables
aux <- lm(MOdela, data = BMHotelsData.df)              # Run auxillary model

# Step 3a: Calculate ghat i.e. the fitted values of the Auxillary Model 
ghat <- fitted(aux)                  # Predict g^

# Step 3b: Calculate hhat = exp(ghat)
hhat <- exp(ghat)                    # Create h^

# Step 4: Implement FGLS by running the regression with weights equal to 1/hhat
fGLS1 <- lm(Model1 , weights = 1/hhat,data = BMHotelsData.df)   # Weight is 1/h^
summary(fGLS1)
## 
## Call:
## lm(formula = Model1, data = BMHotelsData.df, weights = 1/hhat)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.234  -1.018   0.051   1.088  33.636 
## 
## Coefficients: (1 not defined because of singularities)
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.712e+00  2.068e-02 179.475  < 2e-16 ***
## HotelCapacity          9.379e-05  1.137e-05   8.248  < 2e-16 ***
## HasSwimmingPool1      -1.815e-02  4.958e-03  -3.661 0.000252 ***
## FreeBreakfast1        -2.375e-02  4.556e-03  -5.212 1.89e-07 ***
## IsTourist1             2.332e-01  1.898e-02  12.284  < 2e-16 ***
## Available1            -2.443e-01  9.213e-03 -26.517  < 2e-16 ***
## IsMarriott1           -2.127e-02  8.978e-03  -2.369 0.017830 *  
## MedianHomeValue        2.745e-07  1.873e-08  14.661  < 2e-16 ***
## MedianHouseHoldIncome -1.466e-06  1.307e-07 -11.215  < 2e-16 ***
## CityNameAnaheim       -5.707e-01  1.835e-02 -31.092  < 2e-16 ***
## CityNameArlington      1.169e-01  1.988e-02   5.882 4.13e-09 ***
## CityNameAsheville     -9.119e-02  1.689e-02  -5.399 6.78e-08 ***
## CityNameBaltimore     -4.383e-01  1.989e-02 -22.037  < 2e-16 ***
## CityNameBoston        -6.154e-01  1.867e-02 -32.971  < 2e-16 ***
## CityNameBuffalo        1.703e-01  1.891e-02   9.007  < 2e-16 ***
## CityNameChicago       -7.387e-01  2.215e-02 -33.349  < 2e-16 ***
## CityNameCleveland      1.763e-01  1.768e-02   9.970  < 2e-16 ***
## CityNameColumbus       1.173e-01  1.763e-02   6.650 3.01e-11 ***
## CityNameFresno         1.065e-01  1.810e-02   5.882 4.14e-09 ***
## CityNameHouston        2.342e-01  2.035e-02  11.508  < 2e-16 ***
## CityNameJacksonville   3.182e-01  1.802e-02  17.661  < 2e-16 ***
## CityNameKansas City    1.527e-01  1.829e-02   8.346  < 2e-16 ***
## CityNameLake Tahoe    -8.556e-01  1.956e-02 -43.750  < 2e-16 ***
## CityNameLas Vegas     -3.174e-01  1.959e-02 -16.201  < 2e-16 ***
## CityNameLos Angeles   -4.940e-01  1.876e-02 -26.335  < 2e-16 ***
## CityNameLouisville    -5.312e-01  2.054e-02 -25.857  < 2e-16 ***
## CityNameMaui           2.409e-01  1.713e-02  14.065  < 2e-16 ***
## CityNameMemphis        3.860e-02  2.167e-02   1.781 0.074911 .  
## CityNameMilwaukee      1.600e-01  1.818e-02   8.799  < 2e-16 ***
## CityNameNashville      3.731e-01  2.175e-02  17.154  < 2e-16 ***
## CityNameNew Orleans   -2.158e-02  1.734e-02  -1.244 0.213367    
## CityNameNew York City  1.111e-01  1.823e-02   6.095 1.12e-09 ***
## CityNameNiagara Falls -2.699e-01  1.876e-02 -14.384  < 2e-16 ***
## CityNamePhiladelphia  -5.765e-01  2.024e-02 -28.476  < 2e-16 ***
## CityNamePhoenix        3.629e-01  2.066e-02  17.562  < 2e-16 ***
## CityNameSan Antonio    1.682e-01  2.411e-02   6.978 3.11e-12 ***
## CityNameSan Francisco -8.245e-01  2.341e-02 -35.221  < 2e-16 ***
## CityNameSan Jose       4.471e-01  2.073e-02  21.565  < 2e-16 ***
## CityNameSeattle               NA         NA      NA       NA    
## CityNameSt. Louis     -4.652e-01  2.144e-02 -21.700  < 2e-16 ***
## CityNameTampa          2.768e-01  1.854e-02  14.929  < 2e-16 ***
## CityNameTucson         2.852e-02  2.182e-02   1.307 0.191156    
## IsMarriottOrHilton1    1.049e-01  7.630e-03  13.744  < 2e-16 ***
## GuestRating            1.636e-01  2.623e-03  62.360  < 2e-16 ***
## MaxRentUSD             2.405e-03  2.201e-05 109.231  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.645 on 16986 degrees of freedom
## Multiple R-squared:  0.7629, Adjusted R-squared:  0.7623 
## F-statistic:  1271 on 43 and 16986 DF,  p-value: < 2.2e-16
#FGLSEstandSE = coef(summary(fGLS))[, c("Estimate","Std. Error","Pr(>|t|)")] 
#library(data.table)
#dt <- data.table(FGLSEstandSE)
#write.csv(dt, file = "FGLSEstimatesAllcities.csv")



stepAIC(fGLS1,direction="backward")
## Start:  AIC=17005.44
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsTourist + Available + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + IsMarriottOrHilton + GuestRating + MaxRentUSD
## 
## 
## Step:  AIC=17005.44
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     Available + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + IsMarriottOrHilton + GuestRating + MaxRentUSD
## 
##                         Df Sum of Sq   RSS   AIC
## <none>                               45987 17005
## - IsMarriott             1        15 46003 17009
## - HasSwimmingPool        1        36 46024 17017
## - FreeBreakfast          1        74 46061 17031
## - HotelCapacity          1       184 46172 17072
## - MedianHouseHoldIncome  1       341 46328 17129
## - IsMarriottOrHilton     1       511 46499 17192
## - MedianHomeValue        1       582 46569 17218
## - Available              1      1904 47891 17694
## - GuestRating            1     10528 56516 20514
## - CityName              33     17387 63374 22401
## - MaxRentUSD             1     32303 78290 26064
## 
## Call:
## lm(formula = log(RentUSD) ~ HotelCapacity + HasSwimmingPool + 
##     FreeBreakfast + Available + IsMarriott + MedianHomeValue + 
##     MedianHouseHoldIncome + CityName + IsMarriottOrHilton + GuestRating + 
##     MaxRentUSD, data = BMHotelsData.df, weights = 1/hhat)
## 
## Coefficients:
##           (Intercept)          HotelCapacity       HasSwimmingPool1  
##             3.712e+00              9.379e-05             -1.815e-02  
##        FreeBreakfast1             Available1            IsMarriott1  
##            -2.375e-02             -2.443e-01             -2.127e-02  
##       MedianHomeValue  MedianHouseHoldIncome        CityNameAnaheim  
##             2.745e-07             -1.466e-06             -3.375e-01  
##     CityNameArlington      CityNameAsheville      CityNameBaltimore  
##             1.169e-01              1.420e-01             -4.383e-01  
##        CityNameBoston        CityNameBuffalo        CityNameChicago  
##            -3.823e-01              1.703e-01             -5.056e-01  
##     CityNameCleveland       CityNameColumbus         CityNameFresno  
##             1.763e-01              1.173e-01              1.065e-01  
##       CityNameHouston   CityNameJacksonville    CityNameKansas City  
##             2.342e-01              3.182e-01              1.527e-01  
##    CityNameLake Tahoe      CityNameLas Vegas    CityNameLos Angeles  
##            -6.224e-01             -8.427e-02             -2.609e-01  
##    CityNameLouisville           CityNameMaui        CityNameMemphis  
##            -5.312e-01              4.740e-01              3.860e-02  
##     CityNameMilwaukee      CityNameNashville    CityNameNew Orleans  
##             1.600e-01              3.731e-01              2.116e-01  
## CityNameNew York City  CityNameNiagara Falls   CityNamePhiladelphia  
##             3.442e-01             -3.672e-02             -3.433e-01  
##       CityNamePhoenix    CityNameSan Antonio  CityNameSan Francisco  
##             3.629e-01              1.682e-01             -5.913e-01  
##      CityNameSan Jose        CityNameSeattle      CityNameSt. Louis  
##             4.471e-01              2.332e-01             -4.652e-01  
##         CityNameTampa         CityNameTucson    IsMarriottOrHilton1  
##             2.768e-01              2.852e-02              1.049e-01  
##           GuestRating             MaxRentUSD  
##             1.636e-01              2.405e-03

Model with lower AIC - log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + Available + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + CityName + IsMarriottOrHilton + GuestRating + MaxRentUSD

log linear (With Interaction- IsMariott)

Model2<-log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + IsTourist + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + CityName + MaxRentUSD + GuestRating + IsMarriott*HotelCapacity + IsMarriott*HasSwimmingPool + IsMarriott*FreeBreakfast + IsMarriott*IsTourist + IsMarriott*IsWeekend  + IsMarriott*MedianHomeValue + IsMarriott*MedianHouseHoldIncome + IsMarriott*CityName + IsMarriott*MaxRentUSD + IsMarriott*GuestRating

fit2<- lm(Model2, data = BMHotelsData.df)
stepAIC(fit2,direction="backward")
## Start:  AIC=-38867.95
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsTourist + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + MaxRentUSD + GuestRating + IsMarriott * HotelCapacity + 
##     IsMarriott * HasSwimmingPool + IsMarriott * FreeBreakfast + 
##     IsMarriott * IsTourist + IsMarriott * IsWeekend + IsMarriott * 
##     MedianHomeValue + IsMarriott * MedianHouseHoldIncome + IsMarriott * 
##     CityName + IsMarriott * MaxRentUSD + IsMarriott * GuestRating
## 
## 
## Step:  AIC=-38867.95
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsTourist + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + MaxRentUSD + GuestRating + HotelCapacity:IsMarriott + 
##     HasSwimmingPool:IsMarriott + FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + 
##     IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + 
##     IsMarriott:CityName + IsMarriott:MaxRentUSD + IsMarriott:GuestRating
## 
## 
## Step:  AIC=-38867.95
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + MaxRentUSD + GuestRating + HotelCapacity:IsMarriott + 
##     HasSwimmingPool:IsMarriott + FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + 
##     IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + 
##     IsMarriott:CityName + IsMarriott:MaxRentUSD + IsMarriott:GuestRating
## 
##                                    Df Sum of Sq    RSS    AIC
## - HotelCapacity:IsMarriott          1     0.040 1721.5 -38870
## <none>                                          1721.4 -38868
## - IsMarriott:GuestRating            1     0.559 1722.0 -38864
## - FreeBreakfast:IsMarriott          1     0.657 1722.1 -38863
## - IsMarriott:MedianHouseHoldIncome  1     0.771 1722.2 -38862
## - HasSwimmingPool:IsMarriott        1     0.879 1722.3 -38861
## - IsMarriott:MedianHomeValue        1     3.261 1724.7 -38838
## - IsWeekend:IsMarriott              1     6.492 1727.9 -38806
## - IsMarriott:CityName              30    16.334 1737.7 -38767
## - IsMarriott:MaxRentUSD             1   258.622 1980.0 -36486
## 
## Step:  AIC=-38869.56
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + MaxRentUSD + GuestRating + HasSwimmingPool:IsMarriott + 
##     FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + IsMarriott:MedianHomeValue + 
##     IsMarriott:MedianHouseHoldIncome + IsMarriott:CityName + 
##     IsMarriott:MaxRentUSD + IsMarriott:GuestRating
## 
##                                    Df Sum of Sq    RSS    AIC
## <none>                                          1721.5 -38870
## - IsMarriott:GuestRating            1     0.547 1722.0 -38866
## - IsMarriott:MedianHouseHoldIncome  1     0.776 1722.2 -38864
## - FreeBreakfast:IsMarriott          1     0.815 1722.3 -38863
## - HasSwimmingPool:IsMarriott        1     0.897 1722.3 -38863
## - IsMarriott:MedianHomeValue        1     3.339 1724.8 -38839
## - IsWeekend:IsMarriott              1     6.493 1727.9 -38807
## - IsMarriott:CityName              30    16.404 1737.8 -38768
## - HotelCapacity                     1    30.073 1751.5 -38577
## - IsMarriott:MaxRentUSD             1   258.638 1980.1 -36488
## 
## Call:
## lm(formula = log(RentUSD) ~ HotelCapacity + HasSwimmingPool + 
##     FreeBreakfast + IsWeekend + IsMarriott + MedianHomeValue + 
##     MedianHouseHoldIncome + CityName + MaxRentUSD + GuestRating + 
##     HasSwimmingPool:IsMarriott + FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + 
##     IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + 
##     IsMarriott:CityName + IsMarriott:MaxRentUSD + IsMarriott:GuestRating, 
##     data = BMHotelsData.df)
## 
## Coefficients:
##                       (Intercept)                      HotelCapacity  
##                         3.397e+00                          1.809e-04  
##                  HasSwimmingPool1                     FreeBreakfast1  
##                        -1.238e-02                         -4.764e-02  
##                        IsWeekend1                        IsMarriott1  
##                         6.851e-02                          7.491e-01  
##                   MedianHomeValue              MedianHouseHoldIncome  
##                         3.391e-07                         -1.341e-06  
##                   CityNameAnaheim                  CityNameArlington  
##                        -4.742e-01                          1.556e-01  
##                 CityNameAsheville                  CityNameBaltimore  
##                         3.233e-01                         -6.092e-01  
##                    CityNameBoston                    CityNameBuffalo  
##                        -5.160e-01                          1.571e-01  
##                   CityNameChicago                  CityNameCleveland  
##                        -6.403e-01                          1.587e-01  
##                  CityNameColumbus                     CityNameFresno  
##                         6.956e-02                          8.135e-02  
##                   CityNameHouston               CityNameJacksonville  
##                         2.160e-01                          3.499e-01  
##               CityNameKansas City                 CityNameLake Tahoe  
##                         1.262e-01                         -7.914e-01  
##                 CityNameLas Vegas                CityNameLos Angeles  
##                        -1.351e-01                         -3.388e-01  
##                CityNameLouisville                       CityNameMaui  
##                        -6.559e-01                          5.844e-01  
##                   CityNameMemphis                  CityNameMilwaukee  
##                        -3.481e-02                          1.360e-01  
##                 CityNameNashville                CityNameNew Orleans  
##                         4.230e-01                          2.718e-01  
##             CityNameNew York City              CityNameNiagara Falls  
##                         4.126e-01                         -6.313e-02  
##              CityNamePhiladelphia                    CityNamePhoenix  
##                        -4.787e-01                          4.665e-01  
##               CityNameSan Antonio              CityNameSan Francisco  
##                         2.485e-01                         -7.389e-01  
##                  CityNameSan Jose                    CityNameSeattle  
##                         5.030e-01                          2.617e-01  
##                 CityNameSt. Louis                      CityNameTampa  
##                        -5.542e-01                          2.740e-01  
##                    CityNameTucson                         MaxRentUSD  
##                        -8.130e-03                          1.545e-03  
##                       GuestRating       HasSwimmingPool1:IsMarriott1  
##                         2.067e-01                         -8.421e-02  
##        FreeBreakfast1:IsMarriott1             IsWeekend1:IsMarriott1  
##                        -6.566e-02                         -1.481e-01  
##       IsMarriott1:MedianHomeValue  IsMarriott1:MedianHouseHoldIncome  
##                         5.682e-07                         -1.804e-06  
##       IsMarriott1:CityNameAnaheim      IsMarriott1:CityNameArlington  
##                         2.482e-02                          5.305e-02  
##     IsMarriott1:CityNameAsheville      IsMarriott1:CityNameBaltimore  
##                        -1.676e-01                         -1.670e-01  
##        IsMarriott1:CityNameBoston        IsMarriott1:CityNameBuffalo  
##                        -8.843e-02                                 NA  
##       IsMarriott1:CityNameChicago      IsMarriott1:CityNameCleveland  
##                        -8.976e-02                         -7.071e-02  
##      IsMarriott1:CityNameColumbus         IsMarriott1:CityNameFresno  
##                        -1.161e-01                          1.273e-01  
##       IsMarriott1:CityNameHouston   IsMarriott1:CityNameJacksonville  
##                        -2.008e-01                         -8.441e-02  
##   IsMarriott1:CityNameKansas City     IsMarriott1:CityNameLake Tahoe  
##                        -9.893e-02                                 NA  
##     IsMarriott1:CityNameLas Vegas    IsMarriott1:CityNameLos Angeles  
##                         1.332e-01                         -2.265e-01  
##    IsMarriott1:CityNameLouisville           IsMarriott1:CityNameMaui  
##                        -6.302e-02                         -3.831e-02  
##       IsMarriott1:CityNameMemphis      IsMarriott1:CityNameMilwaukee  
##                        -4.405e-02                         -6.387e-02  
##     IsMarriott1:CityNameNashville    IsMarriott1:CityNameNew Orleans  
##                         1.897e-01                         -3.583e-01  
## IsMarriott1:CityNameNew York City  IsMarriott1:CityNameNiagara Falls  
##                        -1.608e-01                         -1.707e-01  
##  IsMarriott1:CityNamePhiladelphia        IsMarriott1:CityNamePhoenix  
##                        -2.255e-01                         -2.173e-01  
##   IsMarriott1:CityNameSan Antonio  IsMarriott1:CityNameSan Francisco  
##                         8.221e-02                         -2.187e-01  
##      IsMarriott1:CityNameSan Jose        IsMarriott1:CityNameSeattle  
##                        -7.678e-02                                 NA  
##     IsMarriott1:CityNameSt. Louis          IsMarriott1:CityNameTampa  
##                        -1.404e-02                          1.461e-01  
##        IsMarriott1:CityNameTucson             IsMarriott1:MaxRentUSD  
##                         9.418e-02                         -1.033e-03  
##           IsMarriott1:GuestRating  
##                        -4.649e-02

** MODEL with lower AIC**- log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + CityName + MaxRentUSD + GuestRating + HasSwimmingPool:IsMarriott + FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + IsMarriott:CityName + IsMarriott:MaxRentUSD + IsMarriott:GuestRating

FGLS

# Step 1: Find lnOLSressq i.e. the Log of the Square of the OLS Residuals
OLSres <- resid(fit2)
OLSressq <- OLSres^2  # Square residuals
lnOLSressq <- log(OLSressq) # Take natural log of squared residuals

MOdelB<-lnOLSressq ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + IsTourist + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + CityName + MaxRentUSD + GuestRating + IsMarriott*HotelCapacity + IsMarriott*HasSwimmingPool + IsMarriott*FreeBreakfast + IsMarriott*IsTourist + IsMarriott*IsWeekend  + IsMarriott*MedianHomeValue + IsMarriott*MedianHouseHoldIncome + IsMarriott*CityName + IsMarriott*MaxRentUSD + IsMarriott*GuestRating

 #Auxillary Model

# Step 2: Auxillary Model -- Regress lnOLSressq on the x variables
aux <- lm(MOdelB, data = BMHotelsData.df)              # Run auxillary model

# Step 3a: Calculate ghat i.e. the fitted values of the Auxillary Model 
ghat <- fitted(aux)                  # Predict g^

# Step 3b: Calculate hhat = exp(ghat)
hhat <- exp(ghat)                    # Create h^

# Step 4: Implement FGLS by running the regression with weights equal to 1/hhat
fGLS2 <- lm(Model2 , weights = 1/hhat,data = BMHotelsData.df)   # Weight is 1/h^
summary(fGLS2)
## 
## Call:
## lm(formula = Model2, data = BMHotelsData.df, weights = 1/hhat)
## 
## Weighted Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.213  -1.094   0.039   1.174  35.336 
## 
## Coefficients: (5 not defined because of singularities)
##                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)                        3.443e+00  1.869e-02 184.229  < 2e-16
## HotelCapacity                      9.394e-05  1.163e-05   8.078 7.01e-16
## HasSwimmingPool1                  -4.466e-03  4.842e-03  -0.922 0.356330
## FreeBreakfast1                    -1.989e-02  4.540e-03  -4.381 1.19e-05
## IsTourist1                         2.233e-01  1.829e-02  12.212  < 2e-16
## IsWeekend1                         4.708e-02  4.308e-03  10.930  < 2e-16
## IsMarriott1                        7.526e-01  7.489e-02  10.048  < 2e-16
## MedianHomeValue                    1.987e-07  1.739e-08  11.428  < 2e-16
## MedianHouseHoldIncome             -1.177e-06  1.289e-07  -9.129  < 2e-16
## CityNameAnaheim                   -5.002e-01  1.850e-02 -27.036  < 2e-16
## CityNameArlington                  1.043e-01  2.102e-02   4.963 7.00e-07
## CityNameAsheville                  1.532e-02  1.548e-02   0.990 0.322415
## CityNameBaltimore                 -4.005e-01  2.039e-02 -19.643  < 2e-16
## CityNameBoston                    -5.628e-01  1.756e-02 -32.043  < 2e-16
## CityNameBuffalo                    1.690e-01  1.910e-02   8.846  < 2e-16
## CityNameChicago                   -6.833e-01  2.051e-02 -33.317  < 2e-16
## CityNameCleveland                  1.756e-01  1.812e-02   9.688  < 2e-16
## CityNameColumbus                   1.106e-01  1.803e-02   6.135 8.68e-10
## CityNameFresno                     9.632e-02  1.793e-02   5.372 7.90e-08
## CityNameHouston                    2.227e-01  2.126e-02  10.474  < 2e-16
## CityNameJacksonville               3.128e-01  1.919e-02  16.297  < 2e-16
## CityNameKansas City                1.284e-01  1.902e-02   6.749 1.54e-11
## CityNameLake Tahoe                -8.009e-01  1.891e-02 -42.359  < 2e-16
## CityNameLas Vegas                 -3.061e-01  2.234e-02 -13.703  < 2e-16
## CityNameLos Angeles               -4.188e-01  1.749e-02 -23.945  < 2e-16
## CityNameLouisville                -4.558e-01  2.022e-02 -22.540  < 2e-16
## CityNameMaui                       2.178e-01  1.488e-02  14.643  < 2e-16
## CityNameMemphis                    2.640e-03  2.181e-02   0.121 0.903662
## CityNameMilwaukee                  1.478e-01  1.888e-02   7.827 5.27e-15
## CityNameNashville                  3.189e-01  1.995e-02  15.983  < 2e-16
## CityNameNew Orleans                2.087e-02  1.650e-02   1.265 0.205883
## CityNameNew York City              1.565e-01  1.363e-02  11.482  < 2e-16
## CityNameNiagara Falls             -2.766e-01  1.867e-02 -14.813  < 2e-16
## CityNamePhiladelphia              -5.140e-01  1.852e-02 -27.748  < 2e-16
## CityNamePhoenix                    3.489e-01  2.102e-02  16.602  < 2e-16
## CityNameSan Antonio                1.436e-01  2.422e-02   5.929 3.11e-09
## CityNameSan Francisco             -7.249e-01  2.153e-02 -33.671  < 2e-16
## CityNameSan Jose                   4.382e-01  2.044e-02  21.445  < 2e-16
## CityNameSeattle                           NA         NA      NA       NA
## CityNameSt. Louis                 -3.272e-01  2.190e-02 -14.940  < 2e-16
## CityNameTampa                      2.454e-01  1.844e-02  13.309  < 2e-16
## CityNameTucson                     2.186e-02  2.065e-02   1.059 0.289771
## MaxRentUSD                         2.917e-03  2.494e-05 116.962  < 2e-16
## GuestRating                        1.504e-01  2.639e-03  56.992  < 2e-16
## HotelCapacity:IsMarriott1          2.683e-04  4.350e-05   6.168 7.08e-10
## HasSwimmingPool1:IsMarriott1      -2.096e-02  1.954e-02  -1.073 0.283455
## FreeBreakfast1:IsMarriott1        -2.717e-02  1.727e-02  -1.573 0.115768
## IsTourist1:IsMarriott1            -3.562e-01  1.257e-01  -2.834 0.004602
## IsWeekend1:IsMarriott1            -9.635e-02  1.300e-02  -7.411 1.31e-13
## IsMarriott1:MedianHomeValue        7.208e-07  7.634e-08   9.441  < 2e-16
## IsMarriott1:MedianHouseHoldIncome -3.628e-06  4.495e-07  -8.072 7.39e-16
## IsMarriott1:CityNameAnaheim        2.091e-01  1.447e-01   1.445 0.148507
## IsMarriott1:CityNameArlington      4.235e-02  6.212e-02   0.682 0.495464
## IsMarriott1:CityNameAsheville      2.724e-01  1.293e-01   2.107 0.035131
## IsMarriott1:CityNameBaltimore     -1.831e-01  7.532e-02  -2.431 0.015080
## IsMarriott1:CityNameBoston         3.261e-01  1.169e-01   2.790 0.005276
## IsMarriott1:CityNameBuffalo               NA         NA      NA       NA
## IsMarriott1:CityNameChicago        2.842e-01  1.274e-01   2.230 0.025754
## IsMarriott1:CityNameCleveland     -1.024e-01  3.851e-02  -2.660 0.007810
## IsMarriott1:CityNameColumbus      -3.116e-02  9.088e-02  -0.343 0.731701
## IsMarriott1:CityNameFresno         7.040e-02  7.020e-02   1.003 0.315929
## IsMarriott1:CityNameHouston       -2.082e-01  4.721e-02  -4.409 1.05e-05
## IsMarriott1:CityNameJacksonville  -4.216e-02  3.967e-02  -1.063 0.287889
## IsMarriott1:CityNameKansas City   -7.562e-02  3.886e-02  -1.946 0.051683
## IsMarriott1:CityNameLake Tahoe            NA         NA      NA       NA
## IsMarriott1:CityNameLas Vegas      4.402e-01  1.287e-01   3.420 0.000627
## IsMarriott1:CityNameLos Angeles    4.384e-02  9.889e-02   0.443 0.657554
## IsMarriott1:CityNameLouisville    -2.028e-01  7.469e-02  -2.714 0.006644
## IsMarriott1:CityNameMaui           4.544e-01  1.168e-01   3.889 0.000101
## IsMarriott1:CityNameMemphis        4.674e-03  6.015e-02   0.078 0.938063
## IsMarriott1:CityNameMilwaukee     -5.079e-02  4.560e-02  -1.114 0.265434
## IsMarriott1:CityNameNashville      2.491e-01  5.280e-02   4.717 2.41e-06
## IsMarriott1:CityNameNew Orleans    4.043e-02  1.254e-01   0.322 0.747209
## IsMarriott1:CityNameNew York City  1.829e-01  1.249e-01   1.465 0.143062
## IsMarriott1:CityNameNiagara Falls  1.389e-01  1.347e-01   1.031 0.302638
## IsMarriott1:CityNamePhiladelphia   9.806e-02  1.089e-01   0.901 0.367860
## IsMarriott1:CityNamePhoenix       -1.741e-01  4.859e-02  -3.583 0.000340
## IsMarriott1:CityNameSan Antonio    1.136e-01  1.141e-01   0.996 0.319071
## IsMarriott1:CityNameSan Francisco         NA         NA      NA       NA
## IsMarriott1:CityNameSan Jose       4.594e-03  1.129e-01   0.041 0.967532
## IsMarriott1:CityNameSeattle               NA         NA      NA       NA
## IsMarriott1:CityNameSt. Louis     -7.452e-02  8.506e-02  -0.876 0.381028
## IsMarriott1:CityNameTampa          1.016e-01  5.509e-02   1.844 0.065242
## IsMarriott1:CityNameTucson         8.702e-02  8.928e-02   0.975 0.329734
## IsMarriott1:MaxRentUSD            -2.341e-03  3.113e-05 -75.211  < 2e-16
## IsMarriott1:GuestRating           -1.565e-02  1.530e-02  -1.023 0.306268
##                                      
## (Intercept)                       ***
## HotelCapacity                     ***
## HasSwimmingPool1                     
## FreeBreakfast1                    ***
## IsTourist1                        ***
## IsWeekend1                        ***
## IsMarriott1                       ***
## MedianHomeValue                   ***
## MedianHouseHoldIncome             ***
## CityNameAnaheim                   ***
## CityNameArlington                 ***
## CityNameAsheville                    
## CityNameBaltimore                 ***
## CityNameBoston                    ***
## CityNameBuffalo                   ***
## CityNameChicago                   ***
## CityNameCleveland                 ***
## CityNameColumbus                  ***
## CityNameFresno                    ***
## CityNameHouston                   ***
## CityNameJacksonville              ***
## CityNameKansas City               ***
## CityNameLake Tahoe                ***
## CityNameLas Vegas                 ***
## CityNameLos Angeles               ***
## CityNameLouisville                ***
## CityNameMaui                      ***
## CityNameMemphis                      
## CityNameMilwaukee                 ***
## CityNameNashville                 ***
## CityNameNew Orleans                  
## CityNameNew York City             ***
## CityNameNiagara Falls             ***
## CityNamePhiladelphia              ***
## CityNamePhoenix                   ***
## CityNameSan Antonio               ***
## CityNameSan Francisco             ***
## CityNameSan Jose                  ***
## CityNameSeattle                      
## CityNameSt. Louis                 ***
## CityNameTampa                     ***
## CityNameTucson                       
## MaxRentUSD                        ***
## GuestRating                       ***
## HotelCapacity:IsMarriott1         ***
## HasSwimmingPool1:IsMarriott1         
## FreeBreakfast1:IsMarriott1           
## IsTourist1:IsMarriott1            ** 
## IsWeekend1:IsMarriott1            ***
## IsMarriott1:MedianHomeValue       ***
## IsMarriott1:MedianHouseHoldIncome ***
## IsMarriott1:CityNameAnaheim          
## IsMarriott1:CityNameArlington        
## IsMarriott1:CityNameAsheville     *  
## IsMarriott1:CityNameBaltimore     *  
## IsMarriott1:CityNameBoston        ** 
## IsMarriott1:CityNameBuffalo          
## IsMarriott1:CityNameChicago       *  
## IsMarriott1:CityNameCleveland     ** 
## IsMarriott1:CityNameColumbus         
## IsMarriott1:CityNameFresno           
## IsMarriott1:CityNameHouston       ***
## IsMarriott1:CityNameJacksonville     
## IsMarriott1:CityNameKansas City   .  
## IsMarriott1:CityNameLake Tahoe       
## IsMarriott1:CityNameLas Vegas     ***
## IsMarriott1:CityNameLos Angeles      
## IsMarriott1:CityNameLouisville    ** 
## IsMarriott1:CityNameMaui          ***
## IsMarriott1:CityNameMemphis          
## IsMarriott1:CityNameMilwaukee        
## IsMarriott1:CityNameNashville     ***
## IsMarriott1:CityNameNew Orleans      
## IsMarriott1:CityNameNew York City    
## IsMarriott1:CityNameNiagara Falls    
## IsMarriott1:CityNamePhiladelphia     
## IsMarriott1:CityNamePhoenix       ***
## IsMarriott1:CityNameSan Antonio      
## IsMarriott1:CityNameSan Francisco    
## IsMarriott1:CityNameSan Jose         
## IsMarriott1:CityNameSeattle          
## IsMarriott1:CityNameSt. Louis        
## IsMarriott1:CityNameTampa         .  
## IsMarriott1:CityNameTucson           
## IsMarriott1:MaxRentUSD            ***
## IsMarriott1:GuestRating              
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.696 on 16949 degrees of freedom
## Multiple R-squared:  0.7849, Adjusted R-squared:  0.7839 
## F-statistic: 773.2 on 80 and 16949 DF,  p-value: < 2.2e-16
#FGLSEstandSE = coef(summary(fGLS))[, c("Estimate","Std. Error","Pr(>|t|)")] 
#library(data.table)
#dt <- data.table(FGLSEstandSE)
#write.csv(dt, file = "FGLSEstimatesAllcities.csv")



stepAIC(fGLS2,direction="backward")
## Start:  AIC=18064.93
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsTourist + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + MaxRentUSD + GuestRating + IsMarriott * HotelCapacity + 
##     IsMarriott * HasSwimmingPool + IsMarriott * FreeBreakfast + 
##     IsMarriott * IsTourist + IsMarriott * IsWeekend + IsMarriott * 
##     MedianHomeValue + IsMarriott * MedianHouseHoldIncome + IsMarriott * 
##     CityName + IsMarriott * MaxRentUSD + IsMarriott * GuestRating
## 
## 
## Step:  AIC=18064.93
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsTourist + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + MaxRentUSD + GuestRating + HotelCapacity:IsMarriott + 
##     HasSwimmingPool:IsMarriott + FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + 
##     IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + 
##     IsMarriott:CityName + IsMarriott:MaxRentUSD + IsMarriott:GuestRating
## 
## 
## Step:  AIC=18064.93
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + MaxRentUSD + GuestRating + HotelCapacity:IsMarriott + 
##     HasSwimmingPool:IsMarriott + FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + 
##     IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + 
##     IsMarriott:CityName + IsMarriott:MaxRentUSD + IsMarriott:GuestRating
## 
##                                    Df Sum of Sq   RSS   AIC
## - IsMarriott:GuestRating            1       3.0 48730 18064
## - HasSwimmingPool:IsMarriott        1       3.3 48730 18064
## <none>                                          48727 18065
## - FreeBreakfast:IsMarriott          1       7.1 48734 18065
## - HotelCapacity:IsMarriott          1     109.4 48836 18101
## - IsWeekend:IsMarriott              1     157.9 48885 18118
## - IsMarriott:MedianHouseHoldIncome  1     187.3 48914 18128
## - IsMarriott:MedianHomeValue        1     256.3 48983 18152
## - IsMarriott:CityName              30     760.1 49487 18269
## - IsMarriott:MaxRentUSD             1   16262.4 64990 22967
## 
## Step:  AIC=18063.98
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + MaxRentUSD + GuestRating + HotelCapacity:IsMarriott + 
##     HasSwimmingPool:IsMarriott + FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + 
##     IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + 
##     IsMarriott:CityName + IsMarriott:MaxRentUSD
## 
##                                    Df Sum of Sq   RSS   AIC
## - HasSwimmingPool:IsMarriott        1       3.4 48733 18063
## <none>                                          48730 18064
## - FreeBreakfast:IsMarriott          1      12.1 48742 18066
## - HotelCapacity:IsMarriott          1     108.6 48839 18100
## - IsWeekend:IsMarriott              1     157.9 48888 18117
## - IsMarriott:MedianHouseHoldIncome  1     185.4 48916 18127
## - IsMarriott:MedianHomeValue        1     253.3 48983 18150
## - IsMarriott:CityName              30    1586.7 50317 18550
## - GuestRating                       1    9564.9 58295 21114
## - IsMarriott:MaxRentUSD             1   16498.4 65228 23028
## 
## Step:  AIC=18063.17
## log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + 
##     IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + 
##     CityName + MaxRentUSD + GuestRating + HotelCapacity:IsMarriott + 
##     FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + IsMarriott:MedianHomeValue + 
##     IsMarriott:MedianHouseHoldIncome + IsMarriott:CityName + 
##     IsMarriott:MaxRentUSD
## 
##                                    Df Sum of Sq   RSS   AIC
## - HasSwimmingPool                   1       4.2 48738 18063
## <none>                                          48733 18063
## - FreeBreakfast:IsMarriott          1      11.1 48745 18065
## - HotelCapacity:IsMarriott          1     109.1 48843 18099
## - IsWeekend:IsMarriott              1     157.9 48891 18116
## - IsMarriott:MedianHouseHoldIncome  1     232.8 48966 18142
## - IsMarriott:MedianHomeValue        1     272.0 49006 18156
## - IsMarriott:CityName              30    1612.2 50346 18557
## - GuestRating                       1    9581.9 58315 21118
## - IsMarriott:MaxRentUSD             1   16503.7 65237 23028
## 
## Step:  AIC=18062.64
## log(RentUSD) ~ HotelCapacity + FreeBreakfast + IsWeekend + IsMarriott + 
##     MedianHomeValue + MedianHouseHoldIncome + CityName + MaxRentUSD + 
##     GuestRating + HotelCapacity:IsMarriott + FreeBreakfast:IsMarriott + 
##     IsWeekend:IsMarriott + IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + 
##     IsMarriott:CityName + IsMarriott:MaxRentUSD
## 
##                                    Df Sum of Sq   RSS   AIC
## <none>                                          48738 18063
## - FreeBreakfast:IsMarriott          1      10.1 48748 18064
## - HotelCapacity:IsMarriott          1     111.8 48850 18100
## - IsWeekend:IsMarriott              1     157.9 48896 18116
## - IsMarriott:MedianHouseHoldIncome  1     238.2 48976 18144
## - IsMarriott:MedianHomeValue        1     273.7 49011 18156
## - IsMarriott:CityName              30    1643.8 50381 18568
## - GuestRating                       1    9662.8 58400 21141
## - IsMarriott:MaxRentUSD             1   16522.4 65260 23032
## 
## Call:
## lm(formula = log(RentUSD) ~ HotelCapacity + FreeBreakfast + IsWeekend + 
##     IsMarriott + MedianHomeValue + MedianHouseHoldIncome + CityName + 
##     MaxRentUSD + GuestRating + HotelCapacity:IsMarriott + FreeBreakfast:IsMarriott + 
##     IsWeekend:IsMarriott + IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + 
##     IsMarriott:CityName + IsMarriott:MaxRentUSD, data = BMHotelsData.df, 
##     weights = 1/hhat)
## 
## Coefficients:
##                       (Intercept)                      HotelCapacity  
##                         3.442e+00                          9.200e-05  
##                    FreeBreakfast1                         IsWeekend1  
##                        -2.049e-02                          4.708e-02  
##                       IsMarriott1                    MedianHomeValue  
##                         6.726e-01                          2.005e-07  
##             MedianHouseHoldIncome                    CityNameAnaheim  
##                        -1.188e-06                         -2.750e-01  
##                 CityNameArlington                  CityNameAsheville  
##                         1.037e-01                          2.390e-01  
##                 CityNameBaltimore                     CityNameBoston  
##                        -3.966e-01                         -3.354e-01  
##                   CityNameBuffalo                    CityNameChicago  
##                         1.705e-01                         -4.539e-01  
##                 CityNameCleveland                   CityNameColumbus  
##                         1.769e-01                          1.113e-01  
##                    CityNameFresno                    CityNameHouston  
##                         9.538e-02                          2.235e-01  
##              CityNameJacksonville                CityNameKansas City  
##                         3.127e-01                          1.288e-01  
##                CityNameLake Tahoe                  CityNameLas Vegas  
##                        -5.750e-01                         -8.276e-02  
##               CityNameLos Angeles                 CityNameLouisville  
##                        -1.932e-01                         -4.521e-01  
##                      CityNameMaui                    CityNameMemphis  
##                         4.399e-01                          4.953e-03  
##                 CityNameMilwaukee                  CityNameNashville  
##                         1.486e-01                          3.189e-01  
##               CityNameNew Orleans              CityNameNew York City  
##                         2.448e-01                          3.821e-01  
##             CityNameNiagara Falls               CityNamePhiladelphia  
##                        -5.236e-02                         -2.856e-01  
##                   CityNamePhoenix                CityNameSan Antonio  
##                         3.485e-01                          1.436e-01  
##             CityNameSan Francisco                   CityNameSan Jose  
##                        -4.978e-01                          4.385e-01  
##                   CityNameSeattle                  CityNameSt. Louis  
##                         2.246e-01                         -3.236e-01  
##                     CityNameTampa                     CityNameTucson  
##                         2.455e-01                          2.452e-02  
##                        MaxRentUSD                        GuestRating  
##                         2.919e-03                          1.496e-01  
##         HotelCapacity:IsMarriott1         FreeBreakfast1:IsMarriott1  
##                         2.708e-04                         -3.023e-02  
##            IsWeekend1:IsMarriott1        IsMarriott1:MedianHomeValue  
##                        -9.635e-02                          7.300e-07  
## IsMarriott1:MedianHouseHoldIncome        IsMarriott1:CityNameAnaheim  
##                        -3.814e-06                         -2.123e-01  
##     IsMarriott1:CityNameArlington      IsMarriott1:CityNameAsheville  
##                         4.462e-02                         -8.192e-02  
##     IsMarriott1:CityNameBaltimore         IsMarriott1:CityNameBoston  
##                        -2.450e-01                         -8.548e-02  
##       IsMarriott1:CityNameBuffalo        IsMarriott1:CityNameChicago  
##                                NA                         -1.251e-01  
##     IsMarriott1:CityNameCleveland       IsMarriott1:CityNameColumbus  
##                        -9.386e-02                         -6.188e-03  
##        IsMarriott1:CityNameFresno        IsMarriott1:CityNameHouston  
##                         7.357e-02                         -2.056e-01  
##  IsMarriott1:CityNameJacksonville    IsMarriott1:CityNameKansas City  
##                        -3.986e-02                         -7.163e-02  
##    IsMarriott1:CityNameLake Tahoe      IsMarriott1:CityNameLas Vegas  
##                                NA                          8.603e-02  
##   IsMarriott1:CityNameLos Angeles     IsMarriott1:CityNameLouisville  
##                        -3.734e-01                         -2.721e-01  
##          IsMarriott1:CityNameMaui        IsMarriott1:CityNameMemphis  
##                         1.066e-01                          8.482e-03  
##     IsMarriott1:CityNameMilwaukee      IsMarriott1:CityNameNashville  
##                        -4.543e-02                          2.641e-01  
##   IsMarriott1:CityNameNew Orleans  IsMarriott1:CityNameNew York City  
##                        -3.022e-01                         -1.502e-01  
## IsMarriott1:CityNameNiagara Falls   IsMarriott1:CityNamePhiladelphia  
##                        -2.198e-01                         -3.153e-01  
##       IsMarriott1:CityNamePhoenix    IsMarriott1:CityNameSan Antonio  
##                        -1.711e-01                          1.142e-01  
## IsMarriott1:CityNameSan Francisco       IsMarriott1:CityNameSan Jose  
##                        -4.095e-01                          3.544e-03  
##       IsMarriott1:CityNameSeattle      IsMarriott1:CityNameSt. Louis  
##                                NA                         -1.344e-01  
##         IsMarriott1:CityNameTampa         IsMarriott1:CityNameTucson  
##                         1.070e-01                          1.060e-01  
##            IsMarriott1:MaxRentUSD  
##                        -2.346e-03

MOdel with lower AIC

log(RentUSD) ~ log(RentUSD) ~ HotelCapacity + FreeBreakfast + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + CityName + MaxRentUSD + GuestRating + HotelCapacity:IsMarriott + FreeBreakfast:IsMarriott + IsWeekend:IsMarriott + IsMarriott:MedianHomeValue + IsMarriott:MedianHouseHoldIncome + IsMarriott:CityName + IsMarriott:MaxRentUSD

All Subsets regression

(without interactions)

library(leaps)
## Warning: package 'leaps' was built under R version 3.4.2
leaps<-regsubsets(log(RentUSD) ~ HasSwimmingPool + FreeBreakfast + IsTourist + HotelCapacity+ IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + MaxRentUSD + GuestRating ,really.big=T,data=BMHotelsData.df,nbest=4)

summary(leaps)
## Subset selection object
## Call: regsubsets.formula(log(RentUSD) ~ HasSwimmingPool + FreeBreakfast + 
##     IsTourist + HotelCapacity + IsWeekend + IsMarriott + MedianHomeValue + 
##     MedianHouseHoldIncome + MaxRentUSD + GuestRating, really.big = T, 
##     data = BMHotelsData.df, nbest = 4)
## 10 Variables  (and intercept)
##                       Forced in Forced out
## HasSwimmingPool1          FALSE      FALSE
## FreeBreakfast1            FALSE      FALSE
## IsTourist1                FALSE      FALSE
## HotelCapacity             FALSE      FALSE
## IsWeekend1                FALSE      FALSE
## IsMarriott1               FALSE      FALSE
## MedianHomeValue           FALSE      FALSE
## MedianHouseHoldIncome     FALSE      FALSE
## MaxRentUSD                FALSE      FALSE
## GuestRating               FALSE      FALSE
## 4 subsets of each size up to 8
## Selection Algorithm: exhaustive
##          HasSwimmingPool1 FreeBreakfast1 IsTourist1 HotelCapacity
## 1  ( 1 ) " "              " "            " "        " "          
## 1  ( 2 ) " "              " "            " "        " "          
## 1  ( 3 ) " "              " "            " "        " "          
## 1  ( 4 ) " "              " "            "*"        " "          
## 2  ( 1 ) " "              " "            " "        " "          
## 2  ( 2 ) " "              " "            " "        " "          
## 2  ( 3 ) " "              " "            "*"        " "          
## 2  ( 4 ) " "              " "            " "        " "          
## 3  ( 1 ) " "              " "            " "        "*"          
## 3  ( 2 ) " "              " "            " "        " "          
## 3  ( 3 ) " "              " "            " "        " "          
## 3  ( 4 ) " "              "*"            " "        " "          
## 4  ( 1 ) " "              " "            " "        "*"          
## 4  ( 2 ) " "              " "            " "        " "          
## 4  ( 3 ) " "              " "            " "        "*"          
## 4  ( 4 ) " "              "*"            " "        " "          
## 5  ( 1 ) " "              " "            " "        "*"          
## 5  ( 2 ) " "              " "            " "        "*"          
## 5  ( 3 ) " "              "*"            " "        "*"          
## 5  ( 4 ) " "              "*"            " "        " "          
## 6  ( 1 ) " "              " "            " "        "*"          
## 6  ( 2 ) " "              "*"            " "        "*"          
## 6  ( 3 ) " "              " "            " "        "*"          
## 6  ( 4 ) "*"              " "            " "        "*"          
## 7  ( 1 ) " "              "*"            " "        "*"          
## 7  ( 2 ) " "              " "            " "        "*"          
## 7  ( 3 ) " "              "*"            " "        "*"          
## 7  ( 4 ) "*"              " "            " "        "*"          
## 8  ( 1 ) " "              "*"            " "        "*"          
## 8  ( 2 ) "*"              "*"            " "        "*"          
## 8  ( 3 ) "*"              " "            " "        "*"          
## 8  ( 4 ) " "              "*"            "*"        "*"          
##          IsWeekend1 IsMarriott1 MedianHomeValue MedianHouseHoldIncome
## 1  ( 1 ) " "        " "         " "             " "                  
## 1  ( 2 ) " "        " "         "*"             " "                  
## 1  ( 3 ) " "        " "         " "             " "                  
## 1  ( 4 ) " "        " "         " "             " "                  
## 2  ( 1 ) " "        " "         "*"             " "                  
## 2  ( 2 ) " "        " "         " "             " "                  
## 2  ( 3 ) " "        " "         " "             " "                  
## 2  ( 4 ) " "        " "         " "             "*"                  
## 3  ( 1 ) " "        " "         "*"             " "                  
## 3  ( 2 ) " "        " "         "*"             " "                  
## 3  ( 3 ) " "        "*"         "*"             " "                  
## 3  ( 4 ) " "        " "         "*"             " "                  
## 4  ( 1 ) " "        " "         "*"             " "                  
## 4  ( 2 ) " "        "*"         "*"             " "                  
## 4  ( 3 ) " "        "*"         "*"             " "                  
## 4  ( 4 ) " "        " "         "*"             " "                  
## 5  ( 1 ) " "        "*"         "*"             " "                  
## 5  ( 2 ) "*"        " "         "*"             " "                  
## 5  ( 3 ) " "        " "         "*"             " "                  
## 5  ( 4 ) " "        "*"         "*"             " "                  
## 6  ( 1 ) "*"        "*"         "*"             " "                  
## 6  ( 2 ) " "        "*"         "*"             " "                  
## 6  ( 3 ) " "        "*"         "*"             "*"                  
## 6  ( 4 ) " "        "*"         "*"             " "                  
## 7  ( 1 ) "*"        "*"         "*"             " "                  
## 7  ( 2 ) "*"        "*"         "*"             "*"                  
## 7  ( 3 ) " "        "*"         "*"             "*"                  
## 7  ( 4 ) "*"        "*"         "*"             " "                  
## 8  ( 1 ) "*"        "*"         "*"             "*"                  
## 8  ( 2 ) "*"        "*"         "*"             " "                  
## 8  ( 3 ) "*"        "*"         "*"             "*"                  
## 8  ( 4 ) "*"        "*"         "*"             " "                  
##          MaxRentUSD GuestRating
## 1  ( 1 ) "*"        " "        
## 1  ( 2 ) " "        " "        
## 1  ( 3 ) " "        "*"        
## 1  ( 4 ) " "        " "        
## 2  ( 1 ) "*"        " "        
## 2  ( 2 ) "*"        "*"        
## 2  ( 3 ) "*"        " "        
## 2  ( 4 ) "*"        " "        
## 3  ( 1 ) "*"        " "        
## 3  ( 2 ) "*"        "*"        
## 3  ( 3 ) "*"        " "        
## 3  ( 4 ) "*"        " "        
## 4  ( 1 ) "*"        "*"        
## 4  ( 2 ) "*"        "*"        
## 4  ( 3 ) "*"        " "        
## 4  ( 4 ) "*"        "*"        
## 5  ( 1 ) "*"        "*"        
## 5  ( 2 ) "*"        "*"        
## 5  ( 3 ) "*"        "*"        
## 5  ( 4 ) "*"        "*"        
## 6  ( 1 ) "*"        "*"        
## 6  ( 2 ) "*"        "*"        
## 6  ( 3 ) "*"        "*"        
## 6  ( 4 ) "*"        "*"        
## 7  ( 1 ) "*"        "*"        
## 7  ( 2 ) "*"        "*"        
## 7  ( 3 ) "*"        "*"        
## 7  ( 4 ) "*"        "*"        
## 8  ( 1 ) "*"        "*"        
## 8  ( 2 ) "*"        "*"        
## 8  ( 3 ) "*"        "*"        
## 8  ( 4 ) "*"        "*"
plot(leaps,scales="adjr2")

#library(car)
#subsets(leaps, statistic="cp",main="Cp Plot for All Substs Regresion")
#abline(1,1,lty=2,col="red")

** Result**

Here,the model with predictors- Intercept + FreeBreakfast + HotelCapacity + IsWeekend + IsMarriot + MedianHomeVaue + HouseHoldIncome + MAaxRentUsd + GuestRating has Highest adjr2.

(without interactions) Variable CityName included-

library(leaps)

leaps<-regsubsets(log(RentUSD) ~ HasSwimmingPool + FreeBreakfast + IsTourist + HotelCapacity+ IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + MaxRentUSD + GuestRating + CityName  ,really.big=T,data=BMHotelsData.df,nbest=4)
## Warning in leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax,
## force.in = force.in, : 1 linear dependencies found
## Reordering variables and trying again:
summary(leaps)
## Subset selection object
## Call: regsubsets.formula(log(RentUSD) ~ HasSwimmingPool + FreeBreakfast + 
##     IsTourist + HotelCapacity + IsWeekend + IsMarriott + MedianHomeValue + 
##     MedianHouseHoldIncome + MaxRentUSD + GuestRating + CityName, 
##     really.big = T, data = BMHotelsData.df, nbest = 4)
## 43 Variables  (and intercept)
##                       Forced in Forced out
## HasSwimmingPool1          FALSE      FALSE
## FreeBreakfast1            FALSE      FALSE
## IsTourist1                FALSE      FALSE
## HotelCapacity             FALSE      FALSE
## IsWeekend1                FALSE      FALSE
## IsMarriott1               FALSE      FALSE
## MedianHomeValue           FALSE      FALSE
## MedianHouseHoldIncome     FALSE      FALSE
## MaxRentUSD                FALSE      FALSE
## GuestRating               FALSE      FALSE
## CityNameAnaheim           FALSE      FALSE
## CityNameArlington         FALSE      FALSE
## CityNameAsheville         FALSE      FALSE
## CityNameBaltimore         FALSE      FALSE
## CityNameBoston            FALSE      FALSE
## CityNameBuffalo           FALSE      FALSE
## CityNameChicago           FALSE      FALSE
## CityNameCleveland         FALSE      FALSE
## CityNameColumbus          FALSE      FALSE
## CityNameFresno            FALSE      FALSE
## CityNameHouston           FALSE      FALSE
## CityNameJacksonville      FALSE      FALSE
## CityNameKansas City       FALSE      FALSE
## CityNameLake Tahoe        FALSE      FALSE
## CityNameLas Vegas         FALSE      FALSE
## CityNameLos Angeles       FALSE      FALSE
## CityNameLouisville        FALSE      FALSE
## CityNameMaui              FALSE      FALSE
## CityNameMemphis           FALSE      FALSE
## CityNameMilwaukee         FALSE      FALSE
## CityNameNashville         FALSE      FALSE
## CityNameNew Orleans       FALSE      FALSE
## CityNameNew York City     FALSE      FALSE
## CityNameNiagara Falls     FALSE      FALSE
## CityNamePhiladelphia      FALSE      FALSE
## CityNamePhoenix           FALSE      FALSE
## CityNameSan Antonio       FALSE      FALSE
## CityNameSan Francisco     FALSE      FALSE
## CityNameSan Jose          FALSE      FALSE
## CityNameSt. Louis         FALSE      FALSE
## CityNameTampa             FALSE      FALSE
## CityNameTucson            FALSE      FALSE
## CityNameSeattle           FALSE      FALSE
## 4 subsets of each size up to 9
## Selection Algorithm: exhaustive
##          HasSwimmingPool1 FreeBreakfast1 IsTourist1 HotelCapacity
## 1  ( 1 ) " "              " "            " "        " "          
## 1  ( 2 ) " "              " "            " "        " "          
## 1  ( 3 ) " "              " "            " "        " "          
## 1  ( 4 ) " "              " "            "*"        " "          
## 2  ( 1 ) " "              " "            " "        " "          
## 2  ( 2 ) " "              " "            " "        " "          
## 2  ( 3 ) " "              " "            "*"        " "          
## 2  ( 4 ) " "              " "            " "        " "          
## 3  ( 1 ) " "              " "            " "        " "          
## 3  ( 2 ) " "              " "            " "        "*"          
## 3  ( 3 ) " "              " "            " "        " "          
## 3  ( 4 ) " "              " "            " "        " "          
## 4  ( 1 ) " "              " "            " "        " "          
## 4  ( 2 ) " "              " "            " "        " "          
## 4  ( 3 ) " "              " "            " "        "*"          
## 4  ( 4 ) " "              " "            " "        " "          
## 5  ( 1 ) " "              " "            " "        " "          
## 5  ( 2 ) " "              " "            " "        " "          
## 5  ( 3 ) " "              " "            " "        "*"          
## 5  ( 4 ) " "              " "            " "        " "          
## 6  ( 1 ) " "              " "            " "        " "          
## 6  ( 2 ) " "              " "            " "        " "          
## 6  ( 3 ) " "              " "            " "        "*"          
## 6  ( 4 ) " "              " "            " "        "*"          
## 7  ( 1 ) " "              " "            " "        "*"          
## 7  ( 2 ) " "              " "            " "        " "          
## 7  ( 3 ) " "              " "            " "        " "          
## 7  ( 4 ) " "              " "            " "        " "          
## 8  ( 1 ) " "              " "            " "        " "          
## 8  ( 2 ) " "              " "            " "        "*"          
## 8  ( 3 ) " "              " "            " "        " "          
## 8  ( 4 ) " "              " "            " "        " "          
## 9  ( 1 ) " "              " "            " "        "*"          
## 9  ( 2 ) " "              " "            " "        " "          
## 9  ( 3 ) " "              " "            " "        " "          
## 9  ( 4 ) " "              " "            " "        " "          
##          IsWeekend1 IsMarriott1 MedianHomeValue MedianHouseHoldIncome
## 1  ( 1 ) " "        " "         " "             " "                  
## 1  ( 2 ) " "        " "         "*"             " "                  
## 1  ( 3 ) " "        " "         " "             " "                  
## 1  ( 4 ) " "        " "         " "             " "                  
## 2  ( 1 ) " "        " "         "*"             " "                  
## 2  ( 2 ) " "        " "         " "             " "                  
## 2  ( 3 ) " "        " "         " "             " "                  
## 2  ( 4 ) " "        " "         " "             " "                  
## 3  ( 1 ) " "        " "         "*"             " "                  
## 3  ( 2 ) " "        " "         "*"             " "                  
## 3  ( 3 ) " "        " "         "*"             " "                  
## 3  ( 4 ) " "        " "         "*"             " "                  
## 4  ( 1 ) " "        " "         "*"             " "                  
## 4  ( 2 ) " "        " "         "*"             " "                  
## 4  ( 3 ) " "        " "         "*"             " "                  
## 4  ( 4 ) " "        "*"         "*"             " "                  
## 5  ( 1 ) " "        " "         "*"             " "                  
## 5  ( 2 ) " "        " "         "*"             " "                  
## 5  ( 3 ) " "        " "         "*"             " "                  
## 5  ( 4 ) " "        " "         "*"             " "                  
## 6  ( 1 ) " "        " "         "*"             " "                  
## 6  ( 2 ) " "        " "         "*"             " "                  
## 6  ( 3 ) " "        " "         "*"             " "                  
## 6  ( 4 ) " "        " "         "*"             " "                  
## 7  ( 1 ) " "        " "         "*"             " "                  
## 7  ( 2 ) " "        " "         "*"             " "                  
## 7  ( 3 ) " "        "*"         "*"             " "                  
## 7  ( 4 ) " "        " "         "*"             " "                  
## 8  ( 1 ) " "        " "         "*"             " "                  
## 8  ( 2 ) " "        " "         "*"             " "                  
## 8  ( 3 ) " "        "*"         "*"             " "                  
## 8  ( 4 ) " "        "*"         "*"             "*"                  
## 9  ( 1 ) " "        " "         "*"             " "                  
## 9  ( 2 ) " "        "*"         "*"             " "                  
## 9  ( 3 ) " "        " "         " "             " "                  
## 9  ( 4 ) " "        " "         "*"             " "                  
##          MaxRentUSD GuestRating CityNameAnaheim CityNameArlington
## 1  ( 1 ) "*"        " "         " "             " "              
## 1  ( 2 ) " "        " "         " "             " "              
## 1  ( 3 ) " "        "*"         " "             " "              
## 1  ( 4 ) " "        " "         " "             " "              
## 2  ( 1 ) "*"        " "         " "             " "              
## 2  ( 2 ) "*"        "*"         " "             " "              
## 2  ( 3 ) "*"        " "         " "             " "              
## 2  ( 4 ) "*"        " "         " "             " "              
## 3  ( 1 ) "*"        " "         " "             " "              
## 3  ( 2 ) "*"        " "         " "             " "              
## 3  ( 3 ) "*"        " "         " "             " "              
## 3  ( 4 ) "*"        "*"         " "             " "              
## 4  ( 1 ) "*"        "*"         " "             " "              
## 4  ( 2 ) "*"        "*"         " "             " "              
## 4  ( 3 ) "*"        " "         " "             " "              
## 4  ( 4 ) "*"        " "         " "             " "              
## 5  ( 1 ) "*"        "*"         " "             " "              
## 5  ( 2 ) "*"        "*"         " "             " "              
## 5  ( 3 ) "*"        "*"         " "             " "              
## 5  ( 4 ) "*"        "*"         " "             " "              
## 6  ( 1 ) "*"        "*"         " "             " "              
## 6  ( 2 ) "*"        "*"         " "             " "              
## 6  ( 3 ) "*"        "*"         " "             " "              
## 6  ( 4 ) "*"        "*"         " "             " "              
## 7  ( 1 ) "*"        "*"         " "             " "              
## 7  ( 2 ) "*"        "*"         " "             " "              
## 7  ( 3 ) "*"        "*"         " "             " "              
## 7  ( 4 ) "*"        "*"         " "             " "              
## 8  ( 1 ) "*"        "*"         " "             " "              
## 8  ( 2 ) "*"        "*"         " "             " "              
## 8  ( 3 ) "*"        "*"         " "             " "              
## 8  ( 4 ) "*"        "*"         " "             " "              
## 9  ( 1 ) "*"        "*"         " "             " "              
## 9  ( 2 ) "*"        "*"         " "             " "              
## 9  ( 3 ) "*"        "*"         " "             " "              
## 9  ( 4 ) "*"        "*"         " "             " "              
##          CityNameAsheville CityNameBaltimore CityNameBoston
## 1  ( 1 ) " "               " "               " "           
## 1  ( 2 ) " "               " "               " "           
## 1  ( 3 ) " "               " "               " "           
## 1  ( 4 ) " "               " "               " "           
## 2  ( 1 ) " "               " "               " "           
## 2  ( 2 ) " "               " "               " "           
## 2  ( 3 ) " "               " "               " "           
## 2  ( 4 ) " "               " "               " "           
## 3  ( 1 ) " "               " "               " "           
## 3  ( 2 ) " "               " "               " "           
## 3  ( 3 ) " "               " "               " "           
## 3  ( 4 ) " "               " "               " "           
## 4  ( 1 ) " "               " "               " "           
## 4  ( 2 ) " "               " "               " "           
## 4  ( 3 ) " "               " "               " "           
## 4  ( 4 ) " "               " "               " "           
## 5  ( 1 ) " "               " "               " "           
## 5  ( 2 ) " "               " "               " "           
## 5  ( 3 ) " "               " "               " "           
## 5  ( 4 ) " "               " "               " "           
## 6  ( 1 ) " "               " "               " "           
## 6  ( 2 ) " "               " "               " "           
## 6  ( 3 ) " "               " "               " "           
## 6  ( 4 ) " "               " "               " "           
## 7  ( 1 ) " "               " "               " "           
## 7  ( 2 ) " "               " "               " "           
## 7  ( 3 ) " "               " "               " "           
## 7  ( 4 ) " "               " "               " "           
## 8  ( 1 ) " "               " "               " "           
## 8  ( 2 ) " "               " "               " "           
## 8  ( 3 ) " "               " "               " "           
## 8  ( 4 ) " "               " "               " "           
## 9  ( 1 ) " "               " "               " "           
## 9  ( 2 ) " "               " "               " "           
## 9  ( 3 ) " "               "*"               " "           
## 9  ( 4 ) " "               " "               " "           
##          CityNameBuffalo CityNameChicago CityNameCleveland
## 1  ( 1 ) " "             " "             " "              
## 1  ( 2 ) " "             " "             " "              
## 1  ( 3 ) " "             " "             " "              
## 1  ( 4 ) " "             " "             " "              
## 2  ( 1 ) " "             " "             " "              
## 2  ( 2 ) " "             " "             " "              
## 2  ( 3 ) " "             " "             " "              
## 2  ( 4 ) " "             " "             " "              
## 3  ( 1 ) " "             " "             " "              
## 3  ( 2 ) " "             " "             " "              
## 3  ( 3 ) " "             " "             " "              
## 3  ( 4 ) " "             " "             " "              
## 4  ( 1 ) " "             " "             " "              
## 4  ( 2 ) " "             " "             " "              
## 4  ( 3 ) " "             " "             " "              
## 4  ( 4 ) " "             " "             " "              
## 5  ( 1 ) " "             " "             " "              
## 5  ( 2 ) " "             " "             " "              
## 5  ( 3 ) " "             " "             " "              
## 5  ( 4 ) " "             " "             " "              
## 6  ( 1 ) " "             " "             " "              
## 6  ( 2 ) " "             " "             " "              
## 6  ( 3 ) " "             " "             " "              
## 6  ( 4 ) " "             " "             " "              
## 7  ( 1 ) " "             " "             " "              
## 7  ( 2 ) " "             " "             " "              
## 7  ( 3 ) " "             " "             " "              
## 7  ( 4 ) " "             " "             " "              
## 8  ( 1 ) " "             " "             " "              
## 8  ( 2 ) " "             " "             " "              
## 8  ( 3 ) " "             " "             " "              
## 8  ( 4 ) " "             " "             " "              
## 9  ( 1 ) " "             " "             " "              
## 9  ( 2 ) " "             " "             " "              
## 9  ( 3 ) " "             " "             " "              
## 9  ( 4 ) " "             " "             " "              
##          CityNameColumbus CityNameFresno CityNameHouston
## 1  ( 1 ) " "              " "            " "            
## 1  ( 2 ) " "              " "            " "            
## 1  ( 3 ) " "              " "            " "            
## 1  ( 4 ) " "              " "            " "            
## 2  ( 1 ) " "              " "            " "            
## 2  ( 2 ) " "              " "            " "            
## 2  ( 3 ) " "              " "            " "            
## 2  ( 4 ) " "              " "            " "            
## 3  ( 1 ) " "              " "            " "            
## 3  ( 2 ) " "              " "            " "            
## 3  ( 3 ) " "              " "            " "            
## 3  ( 4 ) " "              " "            " "            
## 4  ( 1 ) " "              " "            " "            
## 4  ( 2 ) " "              " "            " "            
## 4  ( 3 ) " "              " "            " "            
## 4  ( 4 ) " "              " "            " "            
## 5  ( 1 ) " "              " "            " "            
## 5  ( 2 ) " "              " "            " "            
## 5  ( 3 ) " "              " "            " "            
## 5  ( 4 ) " "              " "            " "            
## 6  ( 1 ) " "              " "            " "            
## 6  ( 2 ) " "              " "            " "            
## 6  ( 3 ) " "              " "            " "            
## 6  ( 4 ) " "              " "            " "            
## 7  ( 1 ) " "              " "            " "            
## 7  ( 2 ) " "              " "            " "            
## 7  ( 3 ) " "              " "            " "            
## 7  ( 4 ) " "              " "            " "            
## 8  ( 1 ) " "              " "            " "            
## 8  ( 2 ) " "              " "            " "            
## 8  ( 3 ) " "              " "            " "            
## 8  ( 4 ) " "              " "            " "            
## 9  ( 1 ) " "              " "            " "            
## 9  ( 2 ) " "              " "            " "            
## 9  ( 3 ) " "              " "            " "            
## 9  ( 4 ) " "              " "            " "            
##          CityNameJacksonville CityNameKansas City CityNameLake Tahoe
## 1  ( 1 ) " "                  " "                 " "               
## 1  ( 2 ) " "                  " "                 " "               
## 1  ( 3 ) " "                  " "                 " "               
## 1  ( 4 ) " "                  " "                 " "               
## 2  ( 1 ) " "                  " "                 " "               
## 2  ( 2 ) " "                  " "                 " "               
## 2  ( 3 ) " "                  " "                 " "               
## 2  ( 4 ) " "                  " "                 " "               
## 3  ( 1 ) " "                  " "                 " "               
## 3  ( 2 ) " "                  " "                 " "               
## 3  ( 3 ) " "                  " "                 " "               
## 3  ( 4 ) " "                  " "                 " "               
## 4  ( 1 ) " "                  " "                 " "               
## 4  ( 2 ) " "                  " "                 " "               
## 4  ( 3 ) " "                  " "                 " "               
## 4  ( 4 ) " "                  " "                 " "               
## 5  ( 1 ) " "                  " "                 " "               
## 5  ( 2 ) " "                  " "                 " "               
## 5  ( 3 ) " "                  " "                 " "               
## 5  ( 4 ) " "                  " "                 "*"               
## 6  ( 1 ) " "                  " "                 "*"               
## 6  ( 2 ) " "                  " "                 " "               
## 6  ( 3 ) " "                  " "                 " "               
## 6  ( 4 ) " "                  " "                 " "               
## 7  ( 1 ) " "                  " "                 "*"               
## 7  ( 2 ) " "                  " "                 "*"               
## 7  ( 3 ) " "                  " "                 "*"               
## 7  ( 4 ) " "                  " "                 "*"               
## 8  ( 1 ) " "                  " "                 "*"               
## 8  ( 2 ) " "                  " "                 "*"               
## 8  ( 3 ) " "                  " "                 "*"               
## 8  ( 4 ) " "                  " "                 "*"               
## 9  ( 1 ) " "                  " "                 "*"               
## 9  ( 2 ) " "                  " "                 "*"               
## 9  ( 3 ) " "                  " "                 "*"               
## 9  ( 4 ) " "                  " "                 "*"               
##          CityNameLas Vegas CityNameLos Angeles CityNameLouisville
## 1  ( 1 ) " "               " "                 " "               
## 1  ( 2 ) " "               " "                 " "               
## 1  ( 3 ) " "               " "                 " "               
## 1  ( 4 ) " "               " "                 " "               
## 2  ( 1 ) " "               " "                 " "               
## 2  ( 2 ) " "               " "                 " "               
## 2  ( 3 ) " "               " "                 " "               
## 2  ( 4 ) " "               " "                 " "               
## 3  ( 1 ) " "               " "                 " "               
## 3  ( 2 ) " "               " "                 " "               
## 3  ( 3 ) " "               " "                 " "               
## 3  ( 4 ) " "               " "                 " "               
## 4  ( 1 ) " "               " "                 " "               
## 4  ( 2 ) " "               " "                 " "               
## 4  ( 3 ) " "               " "                 " "               
## 4  ( 4 ) " "               " "                 " "               
## 5  ( 1 ) " "               " "                 " "               
## 5  ( 2 ) " "               " "                 " "               
## 5  ( 3 ) " "               " "                 " "               
## 5  ( 4 ) " "               " "                 " "               
## 6  ( 1 ) " "               " "                 " "               
## 6  ( 2 ) " "               " "                 " "               
## 6  ( 3 ) " "               " "                 " "               
## 6  ( 4 ) " "               " "                 " "               
## 7  ( 1 ) " "               " "                 " "               
## 7  ( 2 ) " "               " "                 " "               
## 7  ( 3 ) " "               " "                 " "               
## 7  ( 4 ) " "               " "                 " "               
## 8  ( 1 ) " "               " "                 " "               
## 8  ( 2 ) " "               " "                 " "               
## 8  ( 3 ) " "               " "                 " "               
## 8  ( 4 ) " "               " "                 " "               
## 9  ( 1 ) " "               " "                 " "               
## 9  ( 2 ) " "               " "                 " "               
## 9  ( 3 ) " "               " "                 "*"               
## 9  ( 4 ) " "               " "                 " "               
##          CityNameMaui CityNameMemphis CityNameMilwaukee CityNameNashville
## 1  ( 1 ) " "          " "             " "               " "              
## 1  ( 2 ) " "          " "             " "               " "              
## 1  ( 3 ) " "          " "             " "               " "              
## 1  ( 4 ) " "          " "             " "               " "              
## 2  ( 1 ) " "          " "             " "               " "              
## 2  ( 2 ) " "          " "             " "               " "              
## 2  ( 3 ) " "          " "             " "               " "              
## 2  ( 4 ) "*"          " "             " "               " "              
## 3  ( 1 ) " "          " "             " "               " "              
## 3  ( 2 ) " "          " "             " "               " "              
## 3  ( 3 ) "*"          " "             " "               " "              
## 3  ( 4 ) " "          " "             " "               " "              
## 4  ( 1 ) "*"          " "             " "               " "              
## 4  ( 2 ) " "          " "             " "               " "              
## 4  ( 3 ) " "          " "             " "               " "              
## 4  ( 4 ) " "          " "             " "               " "              
## 5  ( 1 ) "*"          " "             " "               " "              
## 5  ( 2 ) "*"          " "             " "               " "              
## 5  ( 3 ) "*"          " "             " "               " "              
## 5  ( 4 ) " "          " "             " "               " "              
## 6  ( 1 ) "*"          " "             " "               " "              
## 6  ( 2 ) "*"          " "             " "               " "              
## 6  ( 3 ) "*"          " "             " "               " "              
## 6  ( 4 ) "*"          " "             " "               " "              
## 7  ( 1 ) "*"          " "             " "               " "              
## 7  ( 2 ) "*"          " "             " "               " "              
## 7  ( 3 ) "*"          " "             " "               " "              
## 7  ( 4 ) "*"          " "             " "               " "              
## 8  ( 1 ) "*"          " "             " "               " "              
## 8  ( 2 ) "*"          " "             " "               " "              
## 8  ( 3 ) "*"          " "             " "               " "              
## 8  ( 4 ) "*"          " "             " "               " "              
## 9  ( 1 ) "*"          " "             " "               " "              
## 9  ( 2 ) "*"          " "             " "               " "              
## 9  ( 3 ) "*"          " "             " "               " "              
## 9  ( 4 ) "*"          " "             " "               "*"              
##          CityNameNew Orleans CityNameNew York City CityNameNiagara Falls
## 1  ( 1 ) " "                 " "                   " "                  
## 1  ( 2 ) " "                 " "                   " "                  
## 1  ( 3 ) " "                 " "                   " "                  
## 1  ( 4 ) " "                 " "                   " "                  
## 2  ( 1 ) " "                 " "                   " "                  
## 2  ( 2 ) " "                 " "                   " "                  
## 2  ( 3 ) " "                 " "                   " "                  
## 2  ( 4 ) " "                 " "                   " "                  
## 3  ( 1 ) " "                 " "                   " "                  
## 3  ( 2 ) " "                 " "                   " "                  
## 3  ( 3 ) " "                 " "                   " "                  
## 3  ( 4 ) " "                 " "                   " "                  
## 4  ( 1 ) " "                 " "                   " "                  
## 4  ( 2 ) " "                 " "                   " "                  
## 4  ( 3 ) " "                 " "                   " "                  
## 4  ( 4 ) " "                 " "                   " "                  
## 5  ( 1 ) " "                 "*"                   " "                  
## 5  ( 2 ) " "                 " "                   " "                  
## 5  ( 3 ) " "                 " "                   " "                  
## 5  ( 4 ) " "                 " "                   " "                  
## 6  ( 1 ) " "                 " "                   " "                  
## 6  ( 2 ) " "                 "*"                   " "                  
## 6  ( 3 ) " "                 " "                   " "                  
## 6  ( 4 ) " "                 "*"                   " "                  
## 7  ( 1 ) " "                 " "                   " "                  
## 7  ( 2 ) " "                 "*"                   " "                  
## 7  ( 3 ) " "                 " "                   " "                  
## 7  ( 4 ) " "                 "*"                   " "                  
## 8  ( 1 ) " "                 "*"                   " "                  
## 8  ( 2 ) " "                 "*"                   " "                  
## 8  ( 3 ) " "                 "*"                   " "                  
## 8  ( 4 ) " "                 " "                   " "                  
## 9  ( 1 ) " "                 "*"                   " "                  
## 9  ( 2 ) " "                 "*"                   " "                  
## 9  ( 3 ) " "                 "*"                   " "                  
## 9  ( 4 ) " "                 "*"                   " "                  
##          CityNamePhiladelphia CityNamePhoenix CityNameSan Antonio
## 1  ( 1 ) " "                  " "             " "                
## 1  ( 2 ) " "                  " "             " "                
## 1  ( 3 ) " "                  " "             " "                
## 1  ( 4 ) " "                  " "             " "                
## 2  ( 1 ) " "                  " "             " "                
## 2  ( 2 ) " "                  " "             " "                
## 2  ( 3 ) " "                  " "             " "                
## 2  ( 4 ) " "                  " "             " "                
## 3  ( 1 ) " "                  " "             " "                
## 3  ( 2 ) " "                  " "             " "                
## 3  ( 3 ) " "                  " "             " "                
## 3  ( 4 ) " "                  " "             " "                
## 4  ( 1 ) " "                  " "             " "                
## 4  ( 2 ) " "                  " "             " "                
## 4  ( 3 ) " "                  " "             " "                
## 4  ( 4 ) " "                  " "             " "                
## 5  ( 1 ) " "                  " "             " "                
## 5  ( 2 ) " "                  " "             " "                
## 5  ( 3 ) " "                  " "             " "                
## 5  ( 4 ) " "                  " "             " "                
## 6  ( 1 ) " "                  " "             " "                
## 6  ( 2 ) " "                  "*"             " "                
## 6  ( 3 ) " "                  " "             " "                
## 6  ( 4 ) " "                  " "             " "                
## 7  ( 1 ) " "                  " "             " "                
## 7  ( 2 ) " "                  " "             " "                
## 7  ( 3 ) " "                  " "             " "                
## 7  ( 4 ) " "                  "*"             " "                
## 8  ( 1 ) " "                  "*"             " "                
## 8  ( 2 ) " "                  " "             " "                
## 8  ( 3 ) " "                  " "             " "                
## 8  ( 4 ) " "                  " "             " "                
## 9  ( 1 ) " "                  "*"             " "                
## 9  ( 2 ) " "                  "*"             " "                
## 9  ( 3 ) " "                  "*"             " "                
## 9  ( 4 ) " "                  "*"             " "                
##          CityNameSan Francisco CityNameSan Jose CityNameSeattle
## 1  ( 1 ) " "                   " "              " "            
## 1  ( 2 ) " "                   " "              " "            
## 1  ( 3 ) " "                   " "              " "            
## 1  ( 4 ) " "                   " "              " "            
## 2  ( 1 ) " "                   " "              " "            
## 2  ( 2 ) " "                   " "              " "            
## 2  ( 3 ) " "                   " "              " "            
## 2  ( 4 ) " "                   " "              " "            
## 3  ( 1 ) "*"                   " "              " "            
## 3  ( 2 ) " "                   " "              " "            
## 3  ( 3 ) " "                   " "              " "            
## 3  ( 4 ) " "                   " "              " "            
## 4  ( 1 ) " "                   " "              " "            
## 4  ( 2 ) "*"                   " "              " "            
## 4  ( 3 ) "*"                   " "              " "            
## 4  ( 4 ) "*"                   " "              " "            
## 5  ( 1 ) " "                   " "              " "            
## 5  ( 2 ) "*"                   " "              " "            
## 5  ( 3 ) " "                   " "              " "            
## 5  ( 4 ) "*"                   " "              " "            
## 6  ( 1 ) "*"                   " "              " "            
## 6  ( 2 ) " "                   " "              " "            
## 6  ( 3 ) "*"                   " "              " "            
## 6  ( 4 ) " "                   " "              " "            
## 7  ( 1 ) "*"                   " "              " "            
## 7  ( 2 ) "*"                   " "              " "            
## 7  ( 3 ) "*"                   " "              " "            
## 7  ( 4 ) " "                   " "              " "            
## 8  ( 1 ) "*"                   " "              " "            
## 8  ( 2 ) "*"                   " "              " "            
## 8  ( 3 ) "*"                   " "              " "            
## 8  ( 4 ) "*"                   " "              " "            
## 9  ( 1 ) "*"                   " "              " "            
## 9  ( 2 ) "*"                   " "              " "            
## 9  ( 3 ) " "                   "*"              " "            
## 9  ( 4 ) "*"                   " "              " "            
##          CityNameSt. Louis CityNameTampa CityNameTucson
## 1  ( 1 ) " "               " "           " "           
## 1  ( 2 ) " "               " "           " "           
## 1  ( 3 ) " "               " "           " "           
## 1  ( 4 ) " "               " "           " "           
## 2  ( 1 ) " "               " "           " "           
## 2  ( 2 ) " "               " "           " "           
## 2  ( 3 ) " "               " "           " "           
## 2  ( 4 ) " "               " "           " "           
## 3  ( 1 ) " "               " "           " "           
## 3  ( 2 ) " "               " "           " "           
## 3  ( 3 ) " "               " "           " "           
## 3  ( 4 ) " "               " "           " "           
## 4  ( 1 ) " "               " "           " "           
## 4  ( 2 ) " "               " "           " "           
## 4  ( 3 ) " "               " "           " "           
## 4  ( 4 ) " "               " "           " "           
## 5  ( 1 ) " "               " "           " "           
## 5  ( 2 ) " "               " "           " "           
## 5  ( 3 ) " "               " "           " "           
## 5  ( 4 ) " "               " "           " "           
## 6  ( 1 ) " "               " "           " "           
## 6  ( 2 ) " "               " "           " "           
## 6  ( 3 ) " "               " "           " "           
## 6  ( 4 ) " "               " "           " "           
## 7  ( 1 ) " "               " "           " "           
## 7  ( 2 ) " "               " "           " "           
## 7  ( 3 ) " "               " "           " "           
## 7  ( 4 ) " "               " "           " "           
## 8  ( 1 ) " "               " "           " "           
## 8  ( 2 ) " "               " "           " "           
## 8  ( 3 ) " "               " "           " "           
## 8  ( 4 ) " "               " "           " "           
## 9  ( 1 ) " "               " "           " "           
## 9  ( 2 ) " "               " "           " "           
## 9  ( 3 ) " "               " "           " "           
## 9  ( 4 ) " "               " "           " "
plot(leaps,scales="adjr2")

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
#subsets(leaps, statistic="cp",main="Cp Plot for All Substs Regresion")
#abline(1,1,lty=2,col="red")

Result- Here the model with predictors - Intercept + HotelCapacity + MaxrentUSD + GuestRating + MedianHomeValue + CityName (of some cities) has highest adjr2

regsubsets function

(with interactions- IsMarriott)

library(leaps)

leaps<-regsubsets(log(RentUSD) ~ HotelCapacity + HasSwimmingPool + FreeBreakfast + IsTourist + IsWeekend + IsMarriott + MedianHomeValue + MedianHouseHoldIncome + GuestRating +MaxRentUSD + IsMarriott*HotelCapacity +  IsMarriott*HasSwimmingPool + IsMarriott*FreeBreakfast + IsMarriott*IsTourist + IsMarriott*IsWeekend +  + IsMarriott*MedianHomeValue + IsMarriott*MedianHouseHoldIncome + IsMarriott*MedianHouseHoldIncome ,really.big=T,data=BMHotelsData.df,nbest=4)

summary(leaps)
## Subset selection object
## Call: regsubsets.formula(log(RentUSD) ~ HotelCapacity + HasSwimmingPool + 
##     FreeBreakfast + IsTourist + IsWeekend + IsMarriott + MedianHomeValue + 
##     MedianHouseHoldIncome + GuestRating + MaxRentUSD + IsMarriott * 
##     HotelCapacity + IsMarriott * HasSwimmingPool + IsMarriott * 
##     FreeBreakfast + IsMarriott * IsTourist + IsMarriott * IsWeekend + 
##     +IsMarriott * MedianHomeValue + IsMarriott * MedianHouseHoldIncome + 
##     IsMarriott * MedianHouseHoldIncome, really.big = T, data = BMHotelsData.df, 
##     nbest = 4)
## 17 Variables  (and intercept)
##                                   Forced in Forced out
## HotelCapacity                         FALSE      FALSE
## HasSwimmingPool1                      FALSE      FALSE
## FreeBreakfast1                        FALSE      FALSE
## IsTourist1                            FALSE      FALSE
## IsWeekend1                            FALSE      FALSE
## IsMarriott1                           FALSE      FALSE
## MedianHomeValue                       FALSE      FALSE
## MedianHouseHoldIncome                 FALSE      FALSE
## GuestRating                           FALSE      FALSE
## MaxRentUSD                            FALSE      FALSE
## HotelCapacity:IsMarriott1             FALSE      FALSE
## HasSwimmingPool1:IsMarriott1          FALSE      FALSE
## FreeBreakfast1:IsMarriott1            FALSE      FALSE
## IsTourist1:IsMarriott1                FALSE      FALSE
## IsWeekend1:IsMarriott1                FALSE      FALSE
## IsMarriott1:MedianHomeValue           FALSE      FALSE
## IsMarriott1:MedianHouseHoldIncome     FALSE      FALSE
## 4 subsets of each size up to 8
## Selection Algorithm: exhaustive
##          HotelCapacity HasSwimmingPool1 FreeBreakfast1 IsTourist1
## 1  ( 1 ) " "           " "              " "            " "       
## 1  ( 2 ) " "           " "              " "            " "       
## 1  ( 3 ) " "           " "              " "            " "       
## 1  ( 4 ) " "           " "              " "            "*"       
## 2  ( 1 ) " "           " "              " "            " "       
## 2  ( 2 ) " "           " "              " "            " "       
## 2  ( 3 ) " "           " "              " "            "*"       
## 2  ( 4 ) " "           " "              " "            " "       
## 3  ( 1 ) "*"           " "              " "            " "       
## 3  ( 2 ) " "           " "              " "            " "       
## 3  ( 3 ) " "           " "              " "            " "       
## 3  ( 4 ) " "           " "              " "            " "       
## 4  ( 1 ) "*"           " "              " "            " "       
## 4  ( 2 ) " "           " "              " "            " "       
## 4  ( 3 ) "*"           " "              " "            " "       
## 4  ( 4 ) " "           " "              " "            " "       
## 5  ( 1 ) "*"           " "              " "            " "       
## 5  ( 2 ) "*"           " "              " "            " "       
## 5  ( 3 ) "*"           " "              " "            " "       
## 5  ( 4 ) "*"           " "              " "            " "       
## 6  ( 1 ) "*"           " "              " "            " "       
## 6  ( 2 ) "*"           " "              " "            " "       
## 6  ( 3 ) "*"           " "              "*"            " "       
## 6  ( 4 ) "*"           " "              " "            " "       
## 7  ( 1 ) "*"           " "              " "            " "       
## 7  ( 2 ) "*"           " "              "*"            " "       
## 7  ( 3 ) "*"           " "              " "            " "       
## 7  ( 4 ) "*"           " "              "*"            " "       
## 8  ( 1 ) "*"           " "              "*"            " "       
## 8  ( 2 ) "*"           " "              " "            " "       
## 8  ( 3 ) "*"           " "              " "            " "       
## 8  ( 4 ) "*"           " "              " "            " "       
##          IsWeekend1 IsMarriott1 MedianHomeValue MedianHouseHoldIncome
## 1  ( 1 ) " "        " "         " "             " "                  
## 1  ( 2 ) " "        " "         "*"             " "                  
## 1  ( 3 ) " "        " "         " "             " "                  
## 1  ( 4 ) " "        " "         " "             " "                  
## 2  ( 1 ) " "        " "         "*"             " "                  
## 2  ( 2 ) " "        " "         " "             " "                  
## 2  ( 3 ) " "        " "         " "             " "                  
## 2  ( 4 ) " "        " "         " "             "*"                  
## 3  ( 1 ) " "        " "         "*"             " "                  
## 3  ( 2 ) " "        " "         "*"             " "                  
## 3  ( 3 ) " "        "*"         "*"             " "                  
## 3  ( 4 ) " "        " "         "*"             " "                  
## 4  ( 1 ) " "        " "         "*"             " "                  
## 4  ( 2 ) " "        "*"         "*"             " "                  
## 4  ( 3 ) " "        "*"         "*"             " "                  
## 4  ( 4 ) " "        " "         "*"             " "                  
## 5  ( 1 ) " "        "*"         "*"             " "                  
## 5  ( 2 ) " "        " "         "*"             " "                  
## 5  ( 3 ) " "        " "         "*"             " "                  
## 5  ( 4 ) " "        " "         "*"             " "                  
## 6  ( 1 ) " "        "*"         "*"             " "                  
## 6  ( 2 ) "*"        "*"         "*"             " "                  
## 6  ( 3 ) " "        "*"         "*"             " "                  
## 6  ( 4 ) " "        "*"         "*"             " "                  
## 7  ( 1 ) "*"        "*"         "*"             " "                  
## 7  ( 2 ) " "        "*"         "*"             " "                  
## 7  ( 3 ) " "        "*"         "*"             " "                  
## 7  ( 4 ) "*"        "*"         "*"             " "                  
## 8  ( 1 ) "*"        "*"         "*"             " "                  
## 8  ( 2 ) "*"        "*"         "*"             " "                  
## 8  ( 3 ) "*"        "*"         "*"             " "                  
## 8  ( 4 ) "*"        "*"         "*"             " "                  
##          GuestRating MaxRentUSD HotelCapacity:IsMarriott1
## 1  ( 1 ) " "         "*"        " "                      
## 1  ( 2 ) " "         " "        " "                      
## 1  ( 3 ) "*"         " "        " "                      
## 1  ( 4 ) " "         " "        " "                      
## 2  ( 1 ) " "         "*"        " "                      
## 2  ( 2 ) "*"         "*"        " "                      
## 2  ( 3 ) " "         "*"        " "                      
## 2  ( 4 ) " "         "*"        " "                      
## 3  ( 1 ) " "         "*"        " "                      
## 3  ( 2 ) "*"         "*"        " "                      
## 3  ( 3 ) " "         "*"        " "                      
## 3  ( 4 ) " "         "*"        "*"                      
## 4  ( 1 ) "*"         "*"        " "                      
## 4  ( 2 ) "*"         "*"        " "                      
## 4  ( 3 ) " "         "*"        " "                      
## 4  ( 4 ) "*"         "*"        "*"                      
## 5  ( 1 ) "*"         "*"        " "                      
## 5  ( 2 ) "*"         "*"        " "                      
## 5  ( 3 ) "*"         "*"        " "                      
## 5  ( 4 ) "*"         "*"        " "                      
## 6  ( 1 ) "*"         "*"        " "                      
## 6  ( 2 ) "*"         "*"        " "                      
## 6  ( 3 ) "*"         "*"        " "                      
## 6  ( 4 ) "*"         "*"        " "                      
## 7  ( 1 ) "*"         "*"        " "                      
## 7  ( 2 ) "*"         "*"        " "                      
## 7  ( 3 ) "*"         "*"        " "                      
## 7  ( 4 ) "*"         "*"        " "                      
## 8  ( 1 ) "*"         "*"        " "                      
## 8  ( 2 ) "*"         "*"        " "                      
## 8  ( 3 ) "*"         "*"        " "                      
## 8  ( 4 ) "*"         "*"        " "                      
##          HasSwimmingPool1:IsMarriott1 FreeBreakfast1:IsMarriott1
## 1  ( 1 ) " "                          " "                       
## 1  ( 2 ) " "                          " "                       
## 1  ( 3 ) " "                          " "                       
## 1  ( 4 ) " "                          " "                       
## 2  ( 1 ) " "                          " "                       
## 2  ( 2 ) " "                          " "                       
## 2  ( 3 ) " "                          " "                       
## 2  ( 4 ) " "                          " "                       
## 3  ( 1 ) " "                          " "                       
## 3  ( 2 ) " "                          " "                       
## 3  ( 3 ) " "                          " "                       
## 3  ( 4 ) " "                          " "                       
## 4  ( 1 ) " "                          " "                       
## 4  ( 2 ) " "                          " "                       
## 4  ( 3 ) " "                          " "                       
## 4  ( 4 ) " "                          " "                       
## 5  ( 1 ) " "                          " "                       
## 5  ( 2 ) " "                          " "                       
## 5  ( 3 ) " "                          " "                       
## 5  ( 4 ) "*"                          " "                       
## 6  ( 1 ) " "                          " "                       
## 6  ( 2 ) " "                          " "                       
## 6  ( 3 ) " "                          " "                       
## 6  ( 4 ) "*"                          " "                       
## 7  ( 1 ) " "                          " "                       
## 7  ( 2 ) " "                          " "                       
## 7  ( 3 ) "*"                          " "                       
## 7  ( 4 ) " "                          " "                       
## 8  ( 1 ) " "                          " "                       
## 8  ( 2 ) " "                          " "                       
## 8  ( 3 ) "*"                          " "                       
## 8  ( 4 ) " "                          " "                       
##          IsTourist1:IsMarriott1 IsWeekend1:IsMarriott1
## 1  ( 1 ) " "                    " "                   
## 1  ( 2 ) " "                    " "                   
## 1  ( 3 ) " "                    " "                   
## 1  ( 4 ) " "                    " "                   
## 2  ( 1 ) " "                    " "                   
## 2  ( 2 ) " "                    " "                   
## 2  ( 3 ) " "                    " "                   
## 2  ( 4 ) " "                    " "                   
## 3  ( 1 ) " "                    " "                   
## 3  ( 2 ) " "                    " "                   
## 3  ( 3 ) " "                    " "                   
## 3  ( 4 ) " "                    " "                   
## 4  ( 1 ) " "                    " "                   
## 4  ( 2 ) " "                    " "                   
## 4  ( 3 ) " "                    " "                   
## 4  ( 4 ) " "                    " "                   
## 5  ( 1 ) " "                    " "                   
## 5  ( 2 ) " "                    " "                   
## 5  ( 3 ) " "                    " "                   
## 5  ( 4 ) " "                    " "                   
## 6  ( 1 ) " "                    " "                   
## 6  ( 2 ) " "                    " "                   
## 6  ( 3 ) " "                    " "                   
## 6  ( 4 ) " "                    " "                   
## 7  ( 1 ) " "                    " "                   
## 7  ( 2 ) " "                    " "                   
## 7  ( 3 ) " "                    " "                   
## 7  ( 4 ) " "                    " "                   
## 8  ( 1 ) " "                    " "                   
## 8  ( 2 ) " "                    "*"                   
## 8  ( 3 ) " "                    " "                   
## 8  ( 4 ) " "                    " "                   
##          IsMarriott1:MedianHomeValue IsMarriott1:MedianHouseHoldIncome
## 1  ( 1 ) " "                         " "                              
## 1  ( 2 ) " "                         " "                              
## 1  ( 3 ) " "                         " "                              
## 1  ( 4 ) " "                         " "                              
## 2  ( 1 ) " "                         " "                              
## 2  ( 2 ) " "                         " "                              
## 2  ( 3 ) " "                         " "                              
## 2  ( 4 ) " "                         " "                              
## 3  ( 1 ) " "                         " "                              
## 3  ( 2 ) " "                         " "                              
## 3  ( 3 ) " "                         " "                              
## 3  ( 4 ) " "                         " "                              
## 4  ( 1 ) " "                         " "                              
## 4  ( 2 ) " "                         " "                              
## 4  ( 3 ) " "                         " "                              
## 4  ( 4 ) " "                         " "                              
## 5  ( 1 ) " "                         " "                              
## 5  ( 2 ) "*"                         " "                              
## 5  ( 3 ) " "                         "*"                              
## 5  ( 4 ) " "                         " "                              
## 6  ( 1 ) " "                         "*"                              
## 6  ( 2 ) " "                         " "                              
## 6  ( 3 ) " "                         " "                              
## 6  ( 4 ) " "                         " "                              
## 7  ( 1 ) " "                         "*"                              
## 7  ( 2 ) " "                         "*"                              
## 7  ( 3 ) " "                         "*"                              
## 7  ( 4 ) " "                         " "                              
## 8  ( 1 ) " "                         "*"                              
## 8  ( 2 ) " "                         "*"                              
## 8  ( 3 ) " "                         "*"                              
## 8  ( 4 ) "*"                         "*"
plot(leaps,scales="adjr2")

library(car)
#subsets(leaps, statistic="cp",main="Cp Plot for All Substs Regresion")
#abline(1,1,lty=2,col="red")

Result Here best predictors are- Intercept + Available + MedianHomeValue + SatrRating