The Rmd Document contains the Air Ticket Pricing Analysis of Six Airlines.

What factors explain the difference in price between an economy ticket and a premium-economy airline ticket?

For knowing the Price Difference that accounts for Airline Ticketing (in both Economy and Premium Classes), we need to consider the variables where both the classes are involved. (i.e) Pitch Difference, Width Difference, Seats Total, International/Domestic and Flight Duration.

“PART-1”

Reading Data into R

AirlinesDATA <- read.csv(paste("SixAirlinesDataV2.csv",sep=""))
#DataFrame Structure
str(AirlinesDATA)
## 'data.frame':    458 obs. of  18 variables:
##  $ Airline            : Factor w/ 6 levels "AirFrance","British",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ Aircraft           : Factor w/ 2 levels "AirBus","Boeing": 2 2 2 2 2 2 2 2 2 2 ...
##  $ FlightDuration     : num  12.25 12.25 12.25 12.25 8.16 ...
##  $ TravelMonth        : Factor w/ 4 levels "Aug","Jul","Oct",..: 2 1 4 3 1 4 3 1 4 4 ...
##  $ IsInternational    : Factor w/ 2 levels "Domestic","International": 2 2 2 2 2 2 2 2 2 2 ...
##  $ SeatsEconomy       : int  122 122 122 122 122 122 122 122 122 122 ...
##  $ SeatsPremium       : int  40 40 40 40 40 40 40 40 40 40 ...
##  $ PitchEconomy       : int  31 31 31 31 31 31 31 31 31 31 ...
##  $ PitchPremium       : int  38 38 38 38 38 38 38 38 38 38 ...
##  $ WidthEconomy       : int  18 18 18 18 18 18 18 18 18 18 ...
##  $ WidthPremium       : int  19 19 19 19 19 19 19 19 19 19 ...
##  $ PriceEconomy       : int  2707 2707 2707 2707 1793 1793 1793 1476 1476 1705 ...
##  $ PricePremium       : int  3725 3725 3725 3725 2999 2999 2999 2997 2997 2989 ...
##  $ PriceRelative      : num  0.38 0.38 0.38 0.38 0.67 0.67 0.67 1.03 1.03 0.75 ...
##  $ SeatsTotal         : int  162 162 162 162 162 162 162 162 162 162 ...
##  $ PitchDifference    : int  7 7 7 7 7 7 7 7 7 7 ...
##  $ WidthDifference    : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ PercentPremiumSeats: num  24.7 24.7 24.7 24.7 24.7 ...
View(AirlinesDATA)

Summarize the data to understand the mean, median, standard deviation of each variable

#Summary Stats of Dataset
library(psych)
describe(AirlinesDATA)
##                     vars   n    mean      sd  median trimmed     mad   min
## Airline*               1 458    3.01    1.65    2.00    2.89    1.48  1.00
## Aircraft*              2 458    1.67    0.47    2.00    1.71    0.00  1.00
## FlightDuration         3 458    7.58    3.54    7.79    7.57    4.81  1.25
## TravelMonth*           4 458    2.56    1.17    3.00    2.58    1.48  1.00
## IsInternational*       5 458    1.91    0.28    2.00    2.00    0.00  1.00
## SeatsEconomy           6 458  202.31   76.37  185.00  194.64   85.99 78.00
## SeatsPremium           7 458   33.65   13.26   36.00   33.35   11.86  8.00
## PitchEconomy           8 458   31.22    0.66   31.00   31.26    0.00 30.00
## PitchPremium           9 458   37.91    1.31   38.00   38.05    0.00 34.00
## WidthEconomy          10 458   17.84    0.56   18.00   17.81    0.00 17.00
## WidthPremium          11 458   19.47    1.10   19.00   19.53    0.00 17.00
## PriceEconomy          12 458 1327.08  988.27 1242.00 1244.40 1159.39 65.00
## PricePremium          13 458 1845.26 1288.14 1737.00 1799.05 1845.84 86.00
## PriceRelative         14 458    0.49    0.45    0.36    0.42    0.41  0.02
## SeatsTotal            15 458  235.96   85.29  227.00  228.73   90.44 98.00
## PitchDifference       16 458    6.69    1.76    7.00    6.76    0.00  2.00
## WidthDifference       17 458    1.63    1.19    1.00    1.53    0.00  0.00
## PercentPremiumSeats   18 458   14.65    4.84   13.21   14.31    2.68  4.71
##                         max   range  skew kurtosis    se
## Airline*               6.00    5.00  0.61    -0.95  0.08
## Aircraft*              2.00    1.00 -0.72    -1.48  0.02
## FlightDuration        14.66   13.41 -0.07    -1.12  0.17
## TravelMonth*           4.00    3.00 -0.14    -1.46  0.05
## IsInternational*       2.00    1.00 -2.91     6.50  0.01
## SeatsEconomy         389.00  311.00  0.72    -0.36  3.57
## SeatsPremium          66.00   58.00  0.23    -0.46  0.62
## PitchEconomy          33.00    3.00 -0.03    -0.35  0.03
## PitchPremium          40.00    6.00 -1.51     3.52  0.06
## WidthEconomy          19.00    2.00 -0.04    -0.08  0.03
## WidthPremium          21.00    4.00 -0.08    -0.31  0.05
## PriceEconomy        3593.00 3528.00  0.51    -0.88 46.18
## PricePremium        7414.00 7328.00  0.50     0.43 60.19
## PriceRelative          1.89    1.87  1.17     0.72  0.02
## SeatsTotal           441.00  343.00  0.70    -0.53  3.99
## PitchDifference       10.00    8.00 -0.54     1.78  0.08
## WidthDifference        4.00    4.00  0.84    -0.53  0.06
## PercentPremiumSeats   24.69   19.98  0.71     0.28  0.23

Airlines wise International and Domestic Count

IorD <- xtabs(~AirlinesDATA$Airline+AirlinesDATA$IsInternational)
IorD
##                     AirlinesDATA$IsInternational
## AirlinesDATA$Airline Domestic International
##            AirFrance        0            74
##            British          0           175
##            Delta           40             6
##            Jet              0            61
##            Singapore        0            40
##            Virgin           0            62

Since only Delta Airlines contain Domestic Flights, we can exclude the International/Domestic Parameter from the Airline Ticket Pricing.

Airlines wise Flight Duration

AirlineDuration <- xtabs(~AirlinesDATA$Airline+ AirlinesDATA$FlightDuration)
AirlineDuration
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 1.25 1.33 1.57 1.75 1.8 1.81 1.83 1.91 1.95 2.01 2.06
##            AirFrance    0    0    0    0   0    0    0    0    0    0    0
##            British      6    3    0    0   0    0    4    0    0    0    0
##            Delta        0    0    2    1   1    1    1    1    1    1    2
##            Jet          0    0    0    0   0    0    0    0    0    0    0
##            Singapore    0    0    0    0   0    0    0    0    0    0    0
##            Virgin       0    0    0    0   0    0    0    0    0    0    0
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 2.26 2.3 2.33 2.41 2.5 2.55 2.58 2.66 2.83 2.86 3.08
##            AirFrance    0   0    0    0   0    0    0    0    0    0    0
##            British      0   0    0    8   0    0    0    1    2    0    0
##            Delta        1   2    2    0   1    2    0    0    0    1    0
##            Jet          0   0    0    0   4    0    8    4    0    0    8
##            Singapore    0   0    0    0   0    0    0    0    0    0    0
##            Virgin       0   0    0    0   0    0    0    0    0    0    0
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 3.16 3.25 3.58 3.83 4.08 4.16 4.25 4.26 4.28 4.33
##            AirFrance    0    0    0    0    0    0    0    0    0    0
##            British      0    3    6    8    3    0    0    0    0    0
##            Delta        0    0    0    0    0    0    2    2    1    2
##            Jet          4    9    0    0    2    5    0    0    0    4
##            Singapore    0    0    0    4    0    0    0    0    0    0
##            Virgin       0    0    0    0    0    0    0    0    0    0
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 4.36 4.4 4.43 4.5 4.51 4.63 4.65 4.66 4.7 4.91 5.41
##            AirFrance    0   0    0   0    0    0    0    0   0    0    0
##            British      0   0    0   3    0    0    0    0   0    3    3
##            Delta        1   1    1   0    2    2    1    1   4    0    0
##            Jet          0   0    0   0    0    0    0    0   0    0    0
##            Singapore    0   0    0   0    0    0    0    0   0    0    0
##            Virgin       0   0    0   0    0    0    0    0   0    0    0
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 5.66 6.08 6.16 6.5 6.58 6.66 6.75 6.83 6.91 7.08 7.25
##            AirFrance    0    0    0   0    0    0    0    5    4    0    0
##            British      0    3    0   3    0    3    3    4    0    4    3
##            Delta        0    0    0   0    0    0    0    0    0    0    0
##            Jet          6    0    0   0    0    0    0    0    0    0    0
##            Singapore    0    0    4   4    0    0    0    0    0    0    0
##            Virgin       0    0    0   0    4    0    0    0    4    4    0
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 7.33 7.41 7.5 7.58 7.66 7.75 7.83  8 8.08 8.16 8.25
##            AirFrance    3    0   3    0    1    3    1  0    1    0    0
##            British      0    0   0    4    0    0    0  0    0    3    3
##            Delta        0    0   0    0    0    0    0  0    0    0    0
##            Jet          0    0   0    0    0    0    0  0    0    0    0
##            Singapore    0    0   0    0    0    0    0  0    0    0    0
##            Virgin       0    4   0    0    4    4    0  4    0    0    0
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 8.33 8.41 8.5 8.58 8.66 8.75 8.83 8.91 9.16 9.18 9.25
##            AirFrance   11    1   3    0    0    3    0    3    2    2    4
##            British      0    0   0    3    3    3    0    6    3    0    0
##            Delta        3    0   0    0    0    0    0    0    0    0    0
##            Jet          0    0   0    0    0    0    0    3    0    0    0
##            Singapore    0    0   0    0    0    0    0    0    0    0    0
##            Virgin       0    0   0    0    0    0    4    0    0    0    0
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 9.33 9.41 9.5 9.58 9.66 9.91 10.41 10.5 10.66 10.75
##            AirFrance    0    3   7    0    0    0     0    0     3     0
##            British      3    0   0    3    0    4     3    4     0     0
##            Delta        0    0   3    0    0    0     0    0     0     0
##            Jet          0    0   4    0    0    0     0    0     0     0
##            Singapore    0    0   0    0    3    0     0    0     0     0
##            Virgin       0    0   0    0    0    4     4    0     0     4
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 10.83 11 11.08 11.16 11.25 11.33 11.41 11.5 11.58
##            AirFrance     0  0     0     0     0     0     0    2     0
##            British       0  3     7     7     0     0     8    4     3
##            Delta         0  0     0     0     0     0     0    0     0
##            Jet           0  0     0     0     0     0     0    0     0
##            Singapore     3  0     0     0     0     0     0    0     0
##            Virgin        4  0     0     0     4     3     0    0     0
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 11.75 11.91 12.05 12.08 12.25 12.41 12.5 12.58 12.66
##            AirFrance     2     4     0     0     0     0    0     0     0
##            British       0     0     1     0     4     0    2     0     0
##            Delta         0     0     0     0     0     0    0     0     0
##            Jet           0     0     0     0     0     0    0     0     0
##            Singapore     0     0     0     0     0     3    0     0     4
##            Virgin        0     0     0     4     0     0    0     3     0
##                     AirlinesDATA$FlightDuration
## AirlinesDATA$Airline 12.75 13 13.08 13.33 13.5 13.83 13.91 14.66
##            AirFrance     0  3     0     0    0     0     0     0
##            British       3  0     3     3    3     3     0     0
##            Delta         0  0     0     0    0     0     0     0
##            Jet           0  0     0     0    0     0     0     0
##            Singapore     4  0     0     4    0     0     4     3
##            Virgin        0  0     0     0    0     0     0     0

Drawing Box Plots / Bar Plots to visualize the distribution of each variable independently

Economy v/s Aircraft

par(mfrow=c(2,1))
boxplot(AirlinesDATA$PriceEconomy~AirlinesDATA$Aircraft,main="Price vs Aircraft",xlab="Economy class",las=1,horizontal = TRUE,col=c("red","yellow"))
boxplot(AirlinesDATA$PricePremium~AirlinesDATA$Aircraft,main="Price vs Aircraft",xlab="Premium class",las=1,horizontal = TRUE,col=c("red","yellow"))

Economy v/s Airlines

par(mfrow=c(1,2))
boxplot(AirlinesDATA$PriceEconomy~AirlinesDATA$Airline,main="Economy class v/s Airlines",xlab="Price",las=1,horizontal=TRUE,col=c("aquamarine2","burlywood1")) 
boxplot(AirlinesDATA$PricePremium~AirlinesDATA$Airline,main="Premium class v/s Airlines",xlab="Price",las=1,horizontal=TRUE,col=c("aquamarine2","burlywood1"))

Seats v/s Aircraft

par(mfrow=c(1,3))
boxplot(AirlinesDATA$SeatsEconomy~AirlinesDATA$Aircraft,main="Economy Seats vs Aircraft",xlab="Economy Class",las=1,horizontal = TRUE, col=c("red","yellow"))
boxplot(AirlinesDATA$SeatsPremium~AirlinesDATA$Aircraft,main="Premium Seats vs Aircraft",xlab="Premium Class",las=1,horizontal = TRUE, col=c("red","yellow"))
boxplot(AirlinesDATA$SeatsTotal~AirlinesDATA$Aircraft,main="Total Seats vs Aircraft",xlab="Total Seats",las=1,horizontal = TRUE,col=c("red","yellow"))

Pitch(inches) v/s Aircraft

par(mfrow=c(2,1))
boxplot(AirlinesDATA$PitchEconomy~AirlinesDATA$Aircraft,main="Economy Pitch vs Aircraft",xlab="Pitch",las=1,horizontal = TRUE)
boxplot(AirlinesDATA$PitchPremium~AirlinesDATA$Aircraft,main="Premium Pitch vs Aircraft",xlab="Pitch",las=1,horizontal = TRUE)

Width (inches) v/s Aircraft

par(mfrow=c(2,1))
boxplot(AirlinesDATA$WidthEconomy~AirlinesDATA$Aircraft,main="Economy Width vs Aircraft",xlab="Width",las=1,horizontal = TRUE)
boxplot(AirlinesDATA$WidthPremium~AirlinesDATA$Aircraft,main="Premium Width vs Aircraft",xlab="Width",las=1,horizontal = TRUE )

Flight Duration v/s Aircraft

Flight Duration v/s Airline

par(mfrow=c(1,2))
boxplot(AirlinesDATA$FlightDuration~AirlinesDATA$Aircraft,xlab="Flight Duration",main="Flight Duration v/s Aircraft",las=1,horizontal = TRUE,col=c("red","yellow"))
boxplot(AirlinesDATA$FlightDuration~AirlinesDATA$Airline,xlab="Flight Duration",main="Flight Duration v/s Airline",las=1,horizontal = TRUE,col=c("red","yellow"))

Drawing Scatter Plots to understand how are the variables correlated pair-wise

Possible Scatter Plots:

par(mfrow=c(1,3))
plot(x=AirlinesDATA$PricePremium,y=AirlinesDATA$PriceEconomy,xlab="PricePremium",ylab="PriceEconomy",col=c("red","orange"))
plot(x=AirlinesDATA$PricePremium,y=AirlinesDATA$FlightDuration,xlab="PricePremium",ylab="FlightDuration",col=c("red","orange"))
plot(x=AirlinesDATA$PriceEconomy,y=AirlinesDATA$FlightDuration,xlab="PriceEconomy",ylab="FlightDuration",col=c("red","orange"))

Scatter Plot Matrices

library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:psych':
## 
##     logit
scatterplotMatrix(~PricePremium+PriceEconomy+PitchDifference+WidthDifference,data = AirlinesDATA)

Observations : #PricePremium Variation occurs with the change in PitchDifference Variation occurs with the change in WidthDifference #PriceEconomy Variation occurs with the change in PitchDifference Variation occurs with the change in WidthDifference

library(car)
scatterplotMatrix(~PricePremium+PriceEconomy+SeatsTotal+FlightDuration,data = AirlinesDATA)

Observations : #PricePremium Variation occurs with the change in SeatsTotal Variation occurs the change in FlightDuration. #PriceEconomy Variation occurs with the change in SeatsTotal Variation occurs with the change in PlightDuration.

Correlation Matrix

data1 <- AirlinesDATA[,c(3,12,13,15,16,17)]
cor(data1)
##                 FlightDuration PriceEconomy PricePremium  SeatsTotal
## FlightDuration      1.00000000   0.56664039   0.64873981  0.20023299
## PriceEconomy        0.56664039   1.00000000   0.90138870  0.13243313
## PricePremium        0.64873981   0.90138870   1.00000000  0.19232533
## SeatsTotal          0.20023299   0.13243313   0.19232533  1.00000000
## PitchDifference    -0.03749288  -0.09952511  -0.01806629  0.03416915
## WidthDifference    -0.11856070  -0.08449975  -0.01151218 -0.10584398
##                 PitchDifference WidthDifference
## FlightDuration      -0.03749288     -0.11856070
## PriceEconomy        -0.09952511     -0.08449975
## PricePremium        -0.01806629     -0.01151218
## SeatsTotal           0.03416915     -0.10584398
## PitchDifference      1.00000000      0.76089108
## WidthDifference      0.76089108      1.00000000

Visualizing Correlation Matrix

library(corrplot)
## corrplot 0.84 loaded
corrplot(corr=cor(data1),method="ellipse")

Drawing a Corrgram

library(corrgram)
corrgram(data1 ,upper.panel =panel.pie,text.panel =panel.txt, lower.panel = panel.shade)

Running T-Tests appropriate, to test your Hypotheses

Test1 - > “PricePremium”" V/s “PriceEconomy”

H0= No correlation between PricePremium and PriceEconomy

t.test(AirlinesDATA$PricePremium,AirlinesDATA$PriceEconomy)
## 
##  Welch Two Sample t-test
## 
## data:  AirlinesDATA$PricePremium and AirlinesDATA$PriceEconomy
## t = 6.8304, df = 856.56, p-value = 1.605e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  369.2793 667.0831
## sample estimates:
## mean of x mean of y 
##  1845.258  1327.076

Test2 - > “PricePremium” V/s “FlightDuration”

H0= No correlation between PricePremium and FlightDuration

t.test(AirlinesDATA$PricePremium,AirlinesDATA$FlightDuration)
## 
##  Welch Two Sample t-test
## 
## data:  AirlinesDATA$PricePremium and AirlinesDATA$FlightDuration
## t = 30.531, df = 457.01, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1719.395 1955.965
## sample estimates:
##   mean of x   mean of y 
## 1845.257642    7.577838

Test3 - > “PriceEconomy” V/s “FlightDuration”

H0= No correlation between PriceEconomy and FlightDuration

t.test(AirlinesDATA$PriceEconomy,AirlinesDATA$FlightDuration)
## 
##  Welch Two Sample t-test
## 
## data:  AirlinesDATA$PriceEconomy and AirlinesDATA$FlightDuration
## t = 28.573, df = 457.01, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1228.749 1410.249
## sample estimates:
##   mean of x   mean of y 
## 1327.076419    7.577838

Test4 - > “PriceEconomy” V/s “SeatsTotal”

H0= No correlation between PriceEconomy and SeatsTotal

t.test(AirlinesDATA$PriceEconomy,AirlinesDATA$SeatsTotal)
## 
##  Welch Two Sample t-test
## 
## data:  AirlinesDATA$PriceEconomy and AirlinesDATA$SeatsTotal
## t = 23.54, df = 463.81, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1000.032 1182.199
## sample estimates:
## mean of x mean of y 
## 1327.0764  235.9607

Test5 - > “PricePremium” V/s “SeatsTotal”

H0= No correlation between PricePremium and SeatsTotal

t.test(AirlinesDATA$PricePremium,AirlinesDATA$SeatsTotal)
## 
##  Welch Two Sample t-test
## 
## data:  AirlinesDATA$PricePremium and AirlinesDATA$SeatsTotal
## t = 26.678, df = 461.01, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1490.756 1727.838
## sample estimates:
## mean of x mean of y 
## 1845.2576  235.9607

As p-value (<0.05), we can reject null hypothesis in all the tests.

“PART-2”

Regression Model:

Now from the “part-1”, we have the basic picture of what variables contribute for the Ticket Pricing.

model <- PricePremium ~ PitchDifference + WidthDifference + SeatsTotal + FlightDuration + PriceEconomy + PercentPremiumSeats + IsInternational

model2 <- PriceEconomy ~ PitchDifference + WidthDifference + SeatsTotal + FlightDuration + PricePremium + PercentPremiumSeats + IsInternational

Fit a Linear Regression Model using lm()

Model <- PricePremium ~  PriceEconomy + PitchDifference + WidthDifference + SeatsTotal + FlightDuration + PercentPremiumSeats + IsInternational 
fit <- lm(Model,data=AirlinesDATA)
summary(fit)
## 
## Call:
## lm(formula = Model, data = AirlinesDATA)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1010.0  -258.4   -49.9   133.6  3416.7 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  -1.213e+03  1.695e+02  -7.156 3.40e-12 ***
## PriceEconomy                  1.063e+00  3.077e-02  34.537  < 2e-16 ***
## PitchDifference               8.421e+01  3.656e+01   2.303 0.021722 *  
## WidthDifference               1.224e+02  3.373e+01   3.629 0.000318 ***
## SeatsTotal                    1.920e+00  3.241e-01   5.922 6.31e-09 ***
## FlightDuration                8.459e+01  8.507e+00   9.943  < 2e-16 ***
## PercentPremiumSeats           3.190e+01  5.220e+00   6.112 2.14e-09 ***
## IsInternationalInternational -7.412e+02  2.001e+02  -3.704 0.000238 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 479 on 450 degrees of freedom
## Multiple R-squared:  0.8638, Adjusted R-squared:  0.8617 
## F-statistic: 407.9 on 7 and 450 DF,  p-value: < 2.2e-16
Model2 <- PriceEconomy ~ PitchDifference + WidthDifference + SeatsTotal + FlightDuration + PricePremium 
fit2 <- lm(Model2,data=AirlinesDATA)
summary(fit2)
## 
## Call:
## lm(formula = Model2, data = AirlinesDATA)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2164.31  -187.76    -2.55   102.65  1030.42 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     441.87030  104.31163   4.236 2.76e-05 ***
## PitchDifference -26.24484   17.54055  -1.496   0.1353    
## WidthDifference -39.11664   26.33624  -1.485   0.1382    
## SeatsTotal       -0.49649    0.24004  -2.068   0.0392 *  
## FlightDuration  -10.27514    7.41826  -1.385   0.1667    
## PricePremium      0.71514    0.02026  35.290  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 418.9 on 452 degrees of freedom
## Multiple R-squared:  0.8223, Adjusted R-squared:  0.8203 
## F-statistic: 418.3 on 5 and 452 DF,  p-value: < 2.2e-16

Now we can neglect the model2(as the variables p>0.05 & R-Squared value). ‘model1’ fits the best.

CONCLUSION:

From the OLS Regression(Model1), Pricing of Premium Class varies with Pricing of Economy class, based on the factors(Independent Variables) : PriceEconomy, Pitch Difference, Width Difference, Total Seats, Percentage of Premium Seats