library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(corrplot)
## corrplot 0.84 loaded
library(car)
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
library(perturb)
library(ROCR)
## Loading required package: gplots
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
concrete <- read.csv('/Users/kevinpiger/Desktop/Concrete_Data.csv')
colnames(concrete) <- c('Cement','Blast',   'FlyAsh',   'Water', 'Superplasticizer', 'Coarse', 'Fine', 'Age', 'Concrete')
# 將PA改為每平方公尺承受力量 #
concrete <- concrete %>% mutate(kgC = Concrete * 10) 
attach(concrete)

# kgC 超過400的為 1 ,其餘為 0 #
over400 = matrix(0,length(concrete[,1]),1)
over400 <- ifelse(kgC >= 400, 1, 0)
concrete <- cbind(concrete,over400)


# 看各變數之間是否有相關 #
# 圖表呈現 #

cor(as.matrix(concrete[,1:8]))
##                       Cement       Blast       FlyAsh       Water
## Cement            1.00000000 -0.27406887 -0.396750794 -0.07964953
## Blast            -0.27406887  1.00000000 -0.324514293  0.10657015
## FlyAsh           -0.39675079 -0.32451429  1.000000000 -0.25793405
## Water            -0.07964953  0.10657015 -0.257934049  1.00000000
## Superplasticizer  0.09417923  0.04277701  0.377194443 -0.65847778
## Coarse           -0.11180196 -0.28348360 -0.009256799 -0.18166455
## Fine             -0.22060328 -0.28292147  0.078189625 -0.45225658
## Age               0.08287040 -0.04449653 -0.154660632  0.27749289
##                  Superplasticizer       Coarse        Fine          Age
## Cement                 0.09417923 -0.111801961 -0.22060328  0.082870400
## Blast                  0.04277701 -0.283483598 -0.28292147 -0.044496534
## FlyAsh                 0.37719444 -0.009256799  0.07818963 -0.154660632
## Water                 -0.65847778 -0.181664549 -0.45225658  0.277492894
## Superplasticizer       1.00000000 -0.265624550  0.22215867 -0.192912119
## Coarse                -0.26562455  1.000000000 -0.17765186 -0.002782346
## Fine                   0.22215867 -0.177651858  1.00000000 -0.156544499
## Age                   -0.19291212 -0.002782346 -0.15654450  1.000000000
corrplot(cor(as.matrix(concrete[,1:8])))

# 挑出70% 的資料進行建模 #
n <- nrow(concrete)
set.seed(106354003)
concrete_new <- concrete[sample(n),]
t_idx <- sample(seq_len(n), size = round(0.7 * n))
concrete_train <- concrete_new[t_idx,] %>% as.data.frame()
concrete_test <- concrete_new[ - t_idx,] %>% as.data.frame()
head(concrete_train)
##     Cement Blast FlyAsh Water Superplasticizer Coarse  Fine Age Concrete
## 380  475.0   0.0   59.0 142.0              1.9 1098.0 641.0  28    57.23
## 18   380.0  95.0    0.0 228.0              0.0  932.0 594.0  90    40.56
## 774  382.0   0.0    0.0 186.0              0.0 1111.0 784.0   7    11.47
## 140  313.3 262.2    0.0 175.5              8.6 1046.9 611.8  56    64.90
## 970  314.0 145.3  113.2 178.9              8.0  869.1 690.2  28    46.23
## 562  382.5   0.0    0.0 185.7              0.0 1047.8 739.3   7    24.07
##       kgC over400
## 380 572.3       1
## 18  405.6       1
## 774 114.7       0
## 140 649.0       1
## 970 462.3       1
## 562 240.7       0
# 建立最初模型 #
# 羅吉斯回歸 #
modle1.0 <- glm(over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + Coarse + Fine + Age + Water *Superplasticizer, data = concrete_train,family=binomial(link="logit"), na.action=na.exclude)

# 檢定個別變數係數是否顯著 #
anova(object=modle1.0, test="Chisq")
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: over400
## 
## Terms added sequentially (first to last)
## 
## 
##                        Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                                     719     942.97              
## Cement                  1  131.761       718     811.21 < 2.2e-16 ***
## Blast                   1   21.565       717     789.65 3.420e-06 ***
## FlyAsh                  1   42.210       716     747.44 8.199e-11 ***
## Water                   1   15.566       715     731.87 7.969e-05 ***
## Superplasticizer        1    3.305       714     728.57   0.06905 .  
## Coarse                  1    1.904       713     726.66   0.16768    
## Fine                    1    0.306       712     726.36   0.58019    
## Age                     1  156.261       711     570.10 < 2.2e-16 ***
## Water:Superplasticizer  1    0.337       710     569.76   0.56141    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC(modle1.0)
## [1] 589.7588
summary(modle1.0)
## 
## Call:
## glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Coarse + Fine + Age + Water * Superplasticizer, family = binomial(link = "logit"), 
##     data = concrete_train, na.action = na.exclude)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.4649  -0.5815  -0.3007   0.5425   2.5850  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)            -5.8563634  8.4376291  -0.694 0.487634    
## Cement                  0.0170178  0.0028196   6.035 1.58e-09 ***
## Blast                   0.0112936  0.0032392   3.487 0.000489 ***
## FlyAsh                  0.0128767  0.0042563   3.025 0.002484 ** 
## Water                  -0.0277790  0.0147047  -1.889 0.058876 .  
## Superplasticizer       -0.0528684  0.1914016  -0.276 0.782381    
## Coarse                  0.0020987  0.0029331   0.716 0.474296    
## Fine                    0.0002726  0.0033787   0.081 0.935684    
## Age                     0.0255224  0.0029644   8.610  < 2e-16 ***
## Water:Superplasticizer  0.0006541  0.0011137   0.587 0.556977    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 942.97  on 719  degrees of freedom
## Residual deviance: 569.76  on 710  degrees of freedom
## AIC: 589.76
## 
## Number of Fisher Scoring iterations: 5
# 有顯著的變數剩下 Cement,Blast,FlyAsh,Water, Age #
# 再進行一次羅基斯回歸 #

modle1.1 <- glm(over400 ~ Cement + Blast + FlyAsh + Water + Age  , data  = concrete_train, family=binomial(link="logit"), na.action=na.exclude)
anova(modle1.1,test = 'Chisq')
## Analysis of Deviance Table
## 
## Model: binomial, link: logit
## 
## Response: over400
## 
## Terms added sequentially (first to last)
## 
## 
##        Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
## NULL                     719     942.97              
## Cement  1  131.761       718     811.21 < 2.2e-16 ***
## Blast   1   21.565       717     789.65 3.420e-06 ***
## FlyAsh  1   42.210       716     747.44 8.199e-11 ***
## Water   1   15.566       715     731.87 7.969e-05 ***
## Age     1  158.188       714     573.68 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AIC(modle1.1)
## [1] 585.6844
summary(modle1.1)
## 
## Call:
## glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Age, 
##     family = binomial(link = "logit"), data = concrete_train, 
##     na.action = na.exclude)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.4643  -0.5775  -0.2954   0.5527   2.5602  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.980547   1.243772  -1.592    0.111    
## Cement       0.016967   0.001547  10.971  < 2e-16 ***
## Blast        0.011386   0.001528   7.452 9.23e-14 ***
## FlyAsh       0.014389   0.002416   5.956 2.59e-09 ***
## Water       -0.035007   0.005658  -6.187 6.12e-10 ***
## Age          0.024995   0.002845   8.786  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 942.97  on 719  degrees of freedom
## Residual deviance: 573.68  on 714  degrees of freedom
## AIC: 585.68
## 
## Number of Fisher Scoring iterations: 5
# 檢測是否有離群值 #
# > 1 存在離群值 #
out <- cooks.distance(modle1.1)
out
##          380           18          774          140          970 
## 7.185198e-05 5.150208e-03 1.917560e-04 3.789731e-04 6.444140e-04 
##          562          762          287         1015          462 
## 1.974346e-04 1.808328e-02 4.954777e-04 1.831638e-03 5.492571e-03 
##          998           41          114          143          677 
## 2.019569e-04 1.335852e-07 3.904121e-03 1.518696e-04 1.110544e-06 
##          183          420          241          251          746 
## 1.522640e-04 1.956484e-04 4.451270e-05 5.589898e-05 2.300718e-03 
##          653          313          838          364           88 
## 4.893172e-05 6.415617e-04 2.702383e-04 2.948498e-04 3.718393e-03 
##          351          600          944           61         1005 
## 3.331349e-03 4.292651e-05 1.662274e-04 3.436463e-04 1.157055e-04 
##          267          352          541          199          906 
## 2.968464e-03 1.902841e-03 3.223880e-05 5.396380e-05 4.091397e-04 
##           78          341          989          712          255 
## 2.684107e-03 1.779255e-03 1.431459e-05 2.199750e-04 9.872104e-05 
##          873          347          471          845          582 
## 1.313461e-05 1.897007e-03 1.475547e-04 2.078355e-03 2.421878e-05 
##           29          681          896          750          175 
## 5.602958e-04 8.477336e-06 1.623626e-03 2.774408e-03 4.824477e-05 
##          278          375          650          438          413 
## 2.262774e-03 5.562240e-05 7.408297e-05 3.781083e-03 2.275658e-04 
##          208          367          660          580         1011 
## 1.220810e-03 1.459393e-03 1.022206e-04 3.824184e-04 1.546565e-03 
##          656          536          309          400          542 
## 8.411397e-06 3.670029e-04 1.800716e-04 7.574795e-04 1.642123e-04 
##          644          767          837          201          719 
## 1.668121e-04 3.920933e-04 2.467008e-04 1.263043e-04 9.188111e-03 
##          688          368          590          294          990 
## 6.436413e-07 6.861298e-04 4.301725e-06 7.832775e-05 1.281989e-03 
##          552          338          484          900          498 
## 4.257244e-05 4.338202e-04 4.903211e-05 1.710622e-04 4.133042e-04 
##          383          947          701          850          716 
## 1.245367e-03 2.287444e-04 1.117334e-03 1.485097e-04 2.395916e-06 
##          479          779          713          933          492 
## 7.159151e-03 4.577298e-05 2.226930e-05 5.525190e-03 6.943164e-04 
##          907          586          526           64          697 
## 6.502930e-04 1.917726e-04 5.803358e-03 5.743124e-03 7.626695e-07 
##          108          427          164           13          940 
## 7.474722e-04 5.570479e-05 2.070667e-05 1.573826e-02 1.005033e-04 
##          249          606          315          922          683 
## 2.610149e-05 3.162560e-06 6.570085e-04 1.409728e-04 2.615108e-04 
##          983          431          946           89          141 
## 3.538339e-04 5.387260e-05 1.458375e-04 6.590086e-03 7.575136e-05 
##          971          344          421          763          568 
## 1.115337e-03 5.227766e-04 1.430528e-04 1.729046e-04 2.898238e-04 
##         1020          628          403          861          572 
## 3.108463e-03 5.529957e-06 9.362913e-04 1.003689e-03 3.079286e-05 
##          523          941          592          638          988 
## 2.701651e-04 1.528329e-05 3.743069e-04 3.071557e-04 3.145912e-05 
##         1013          373           81          817          651 
## 2.957574e-03 1.519689e-03 4.246689e-03 1.680078e-03 2.325119e-06 
##           66          714          686          322          109 
## 5.434705e-06 1.661612e-06 3.230784e-04 2.230489e-03 9.140934e-04 
##          206          358          995           47         1024 
## 5.768665e-05 6.981245e-04 2.659061e-04 4.728074e-04 2.220763e-04 
##           57          676          967          691          742 
## 8.030113e-06 2.414049e-05 1.762114e-05 6.988706e-06 3.404347e-04 
##          675          177          361          463          731 
## 1.029437e-04 4.824477e-05 2.551376e-03 1.294071e-03 4.993586e-05 
##          528          374          165          415          561 
## 6.038305e-03 3.656264e-05 1.875687e-05 2.140024e-05 5.325721e-04 
##          736           23          252          524          583 
## 4.205314e-06 4.736946e-03 1.504717e-04 2.701651e-04 1.932891e-03 
##         1004          706          822          171           39 
## 8.000828e-04 6.764469e-05 3.376494e-05 4.882266e-06 2.530711e-02 
##         1012          243          876          603          539 
## 1.214235e-03 4.070191e-03 2.261957e-05 1.791278e-02 3.404347e-04 
##          891          836          615           45          318 
## 1.643454e-04 1.341456e-04 1.174514e-02 2.961017e-04 8.363805e-04 
##          973          220          560          986          570 
## 9.661196e-05 4.348217e-05 6.498453e-05 2.404238e-04 4.467813e-05 
##          930          987           60          770          454 
## 1.680698e-03 1.687410e-03 2.290162e-04 4.993586e-05 1.316083e-04 
##          620          966          766          371          626 
## 1.237144e-01 1.328431e-05 2.566252e-04 2.849028e-04 2.526496e-06 
##           91          333          489          855          456 
## 3.718393e-03 4.998428e-04 3.612332e-03 1.209045e-03 5.173450e-03 
##          924           84          781          529          513 
## 9.644218e-05 4.970561e-03 1.370968e-05 9.424355e-05 3.842896e-04 
##          867          519          728          335          636 
## 2.264024e-04 2.180928e-03 7.492060e-05 5.275838e-04 5.522161e-05 
##          381          811          870          915          984 
## 1.607271e-03 4.386052e-05 6.158914e-05 6.049965e-04 1.328431e-05 
##          869         1010          694          982          617 
## 5.513626e-04 8.654955e-03 7.544213e-05 1.105327e-04 2.585744e-06 
##          749          920          905          579            4 
## 3.097030e-03 3.478708e-04 2.985659e-05 3.648923e-05 4.045541e-06 
##          932          396           30          444          782 
## 5.010604e-04 2.856480e-04 4.107086e-06 8.519303e-05 3.065360e-05 
##          921            6          292          682          324 
## 1.361857e-05 2.228969e-07 2.887160e-03 6.361666e-06 4.636952e-04 
##           44           53          963          550          369 
## 4.543429e-03 1.098307e-02 1.727640e-04 1.912543e-04 1.316835e-04 
##          349           86          864          551          574 
## 5.199707e-04 3.718393e-03 1.510432e-04 3.852600e-06 1.124431e-05 
##          148          517          795           72          440 
## 2.177314e-05 1.461089e-05 2.872242e-06 6.132318e-03 8.986135e-05 
##          258         1000          470           87          607 
## 2.678160e-03 4.812145e-03 2.783713e-03 4.352607e-03 5.662369e-06 
##          664          516           36          703          190 
## 3.655573e-05 1.252727e-05 1.055924e-04 2.182669e-05 1.509592e-05 
##          521          259          624          117          738 
## 4.431603e-04 6.794455e-05 3.838276e-05 9.730320e-04 1.984333e-05 
##          755          494          610          196          449 
## 6.301793e-07 1.160265e-04 1.242242e-01 6.811370e-05 1.216035e-03 
##         1018          525          689          885          191 
## 1.001278e-03 5.803358e-03 2.609802e-05 1.702337e-04 2.481514e-05 
##          657          288          409          500          745 
## 1.881627e-06 2.591018e-03 1.340682e-04 3.746800e-04 3.223016e-05 
##          530          455          509          512          846 
## 9.424355e-05 2.069125e-03 1.575281e-04 1.027503e-02 1.225860e-03 
##          336          853          125          601          173 
## 1.815574e-03 8.758443e-03 7.529716e-05 7.135865e-05 7.417773e-05 
##          284          578          147           73          459 
## 7.292260e-05 3.433011e-04 2.521308e-04 6.707939e-03 1.495145e-03 
##          860          527          961          138          168 
## 7.635597e-04 6.038305e-03 7.387629e-03 9.090088e-04 2.161607e-06 
##          887          976          803          131          155 
## 5.107010e-03 6.673673e-04 1.688133e-04 3.301233e-04 1.584072e-04 
##          623          848          378           46          328 
## 1.497702e-05 1.161802e-04 5.956902e-03 4.993586e-05 8.510213e-04 
##          658          430           93          793          918 
## 3.655877e-04 2.977442e-05 8.735749e-04 1.133017e-05 1.977726e-05 
##          575          302          350          908          257 
## 1.023718e-05 1.098763e-03 7.159672e-04 1.092238e-03 4.129061e-03 
##          248          901          810          705          314 
## 3.134544e-03 2.480331e-04 1.998960e-05 1.469210e-06 4.744665e-04 
##          465          179          842          247          854 
## 1.198232e-03 4.824477e-05 1.595533e-04 1.167657e-04 1.588727e-03 
##          761          979          567          158          729 
## 8.823868e-04 4.023390e-03 1.655074e-05 1.006361e-04 8.941013e-04 
##          159          280          340          799          556 
## 3.494463e-05 6.288157e-05 3.393807e-04 8.443351e-04 7.384088e-04 
##          735          826          632          581          788 
## 2.606594e-03 1.817063e-03 1.019360e-04 1.692352e-04 5.730802e-05 
##          299          820         1028          223          122 
## 1.969480e-04 6.717553e-08 6.770255e-05 1.554551e-03 3.192207e-05 
##          163          760          802          200         1007 
## 1.132528e-04 2.137730e-04 1.350116e-04 7.799815e-05 1.457775e-04 
##          943          269          412          290          609 
## 9.373306e-06 5.964569e-05 2.680648e-04 6.218343e-05 6.247174e-03 
##          868          642          718          670          804 
## 1.073494e-03 1.788378e-05 1.736413e-06 4.309591e-03 3.670029e-04 
##          176          134          791          216          892 
## 3.345951e-05 4.200543e-04 6.509779e-04 1.266877e-04 6.003199e-05 
##          153          365          968          835          493 
## 3.750334e-04 3.932787e-04 2.906097e-05 1.921621e-04 6.943164e-04 
##          414          916          310          598           56 
## 3.866187e-05 4.030752e-03 2.266737e-04 2.891428e-05 8.088256e-08 
##          909           34          181          376          263 
## 2.419149e-05 1.491655e-05 8.621338e-06 9.532991e-05 2.675688e-03 
##          665           75          844          722          794 
## 3.618528e-06 6.614375e-03 3.266342e-03 1.998960e-05 1.152100e-02 
##          154         1027          360          880          188 
## 1.172531e-04 6.141561e-05 1.444579e-03 9.708394e-06 4.142415e-03 
##          996          227           24          236           92 
## 3.650381e-05 1.028809e-02 1.805657e-06 6.883764e-03 1.516923e-03 
##          654          229          508          936          679 
## 4.232587e-06 1.787549e-05 9.399492e-03 1.325675e-05 1.818387e-05 
##          167          540          645          732          222 
## 2.040541e-05 1.817063e-03 2.537192e-04 5.730802e-05 2.207223e-04 
##          461            9          778          616          776 
## 1.476298e-03 1.210010e-03 2.059704e-05 1.226360e-01 6.541757e-05 
##         1006          410          602          806          618 
## 3.715509e-05 1.943723e-04 8.591409e-04 2.022842e-04 1.126561e-04 
##          416          877          326          357           85 
## 3.862031e-04 1.027630e-04 3.940245e-03 1.571186e-03 4.962436e-03 
##          629          871          824          559          965 
## 4.148435e-06 6.601547e-05 1.962535e-05 7.544065e-03 2.331361e-03 
##          753          283           17          881          495 
## 2.922345e-04 2.262774e-03 2.713124e-06 1.702337e-04 1.160265e-04 
##          878           26          112          452          522 
## 1.490525e-05 1.354922e-05 6.907186e-04 2.430953e-03 1.235378e-03 
##          950           90          662           11          955 
## 1.198891e-03 3.257893e-04 6.102292e-05 2.090358e-05 5.930257e-05 
##          825          563          219          613          240 
## 5.498560e-04 9.706583e-04 2.946756e-05 7.474370e-06 2.732902e-05 
##          160          405          980          733          446 
## 1.584072e-04 2.596814e-04 5.722436e-05 1.185507e-04 2.574928e-03 
##          833          348          487          447           31 
## 1.263372e-03 7.077685e-04 3.096808e-04 2.415430e-03 6.264984e-06 
##           40          281          715          862           69 
## 1.084425e-02 9.698863e-05 2.117130e-04 2.620765e-05 3.123289e-04 
##          499          307          809          401          604 
## 7.365914e-04 1.335272e-03 1.538723e-05 7.061867e-04 1.302212e-01 
##          571          466          834          859          404 
## 4.590833e-03 1.766336e-03 5.506566e-03 1.759536e-04 3.967888e-04 
##          436          135          442          759          327 
## 4.498389e-04 2.975715e-04 3.472443e-03 7.264292e-05 2.247795e-03 
##          957          301           76          118           14 
## 3.448103e-04 3.432704e-04 9.980120e-05 2.236707e-04 1.593775e-02 
##          672          952          786          152          110 
## 3.084592e-06 2.667909e-04 7.492060e-05 1.584072e-04 4.690685e-03 
##          985          879           59          170          102 
## 1.421104e-04 1.765439e-03 2.226235e-04 8.157878e-05 1.966163e-04 
##          472          468          702          354          353 
## 1.475547e-04 8.508808e-04 9.776016e-06 3.209163e-04 7.110637e-04 
##           50          242          408           16          210 
## 2.719971e-02 1.304488e-04 1.030053e-04 3.673380e-04 2.731114e-05 
##          904          244           21          649          372 
## 1.789290e-05 1.924851e-05 2.226710e-05 2.055167e-05 7.553574e-04 
##          419          684          903          481          297 
## 5.703673e-05 3.907338e-03 1.361857e-05 4.903211e-05 5.241785e-04 
##          927          890          757          700          974 
## 1.397536e-03 2.213612e-05 3.358893e-05 5.497093e-06 6.244620e-05 
##          685          533          584          667         1029 
## 6.473811e-06 9.739582e-06 2.585111e-03 4.873449e-04 1.566665e-04 
##          942          954          821          723          402 
## 1.770766e-03 1.676714e-04 1.975666e-05 4.386052e-05 1.927731e-03 
##          356          520          246          997          215 
## 2.730939e-03 4.015394e-04 4.246159e-05 1.761576e-03 7.815060e-05 
##           10          981          588         1003          929 
## 3.160110e-04 2.021707e-05 8.785347e-06 1.246318e-03 2.778754e-04 
##           55          695          296           71          239 
## 9.337630e-06 5.848383e-06 1.826179e-04 3.683052e-03 1.878624e-05 
##          898          849         1001          612          394 
## 7.431488e-03 3.635586e-05 3.329720e-03 1.996926e-05 3.150624e-03 
##          126           98          751          150          772 
## 2.236707e-04 5.424195e-04 7.127644e-04 2.546530e-04 1.917560e-04 
##          648          162          577          203          841 
## 1.242738e-05 4.628006e-05 2.684535e-05 2.881021e-03 2.054861e-04 
##          432          884          764          754          475 
## 9.470917e-05 2.285355e-04 1.838172e-04 2.329224e-05 6.964139e-03 
##          450          506          474          991           95 
## 2.656907e-03 1.100451e-04 1.475547e-04 5.527998e-03 5.284379e-04 
##          384          544          548          390          518 
## 2.856480e-04 1.135201e-05 2.560905e-05 2.164848e-03 1.074710e-04 
##          895          634          934          910          856 
## 1.003947e-03 3.158486e-05 3.706896e-04 9.647425e-05 2.901975e-03 
##          977          717          237           63          797 
## 1.770766e-03 4.389810e-06 4.966614e-03 8.001660e-04 1.298975e-05 
##          883          789          978           80          115 
## 1.421191e-04 1.185507e-04 6.152142e-04 6.132318e-03 1.625559e-03 
##          558          585          631          142          773 
## 1.993793e-04 6.680012e-04 4.822008e-05 6.992262e-05 3.644047e-04 
##          696          655          156          282          913 
## 2.725883e-06 5.710542e-05 5.214301e-04 2.640481e-04 6.422915e-04 
##          230           38            1          743          185 
## 2.600977e-05 4.117595e-03 1.615417e-04 5.254017e-04 1.730653e-05 
##          295          709          969          557          441 
## 1.129272e-04 1.375343e-04 4.222931e-04 1.060373e-04 4.758836e-05 
##          422          678          346          418          407 
## 1.879051e-04 4.873993e-04 3.323723e-03 3.791309e-05 1.390805e-04 
##           99          359          832          483          370 
## 8.290172e-05 1.084160e-03 1.444291e-05 4.903211e-05 1.838640e-04 
##          741          666          204          888          182 
## 2.328366e-03 1.891514e-04 2.598737e-05 2.243589e-05 4.824477e-05 
##          337          316          478          482          238 
## 1.007246e-03 9.929421e-04 3.560014e-04 4.903211e-05 4.112233e-03 
##         1022          458           33          535          300 
## 2.801515e-03 1.895377e-03 5.126136e-06 1.873398e-03 2.495258e-04 
##          123          146          186          511          137 
## 2.236707e-04 7.575136e-05 2.785380e-05 9.702368e-05 4.200543e-04 
##          711          323          393          911           42 
## 1.381962e-03 1.195689e-03 2.423498e-03 6.336842e-05 1.458661e-01 
##          687          828          116          406          211 
## 3.639585e-03 1.178641e-04 4.000345e-04 3.871000e-05 4.453712e-05 
##          928          453          780          919          813 
## 1.456093e-03 2.602925e-04 1.069983e-05 1.120756e-04 1.562342e-02 
##          491          994          734          385          467 
## 3.761997e-03 2.462608e-04 3.708437e-03 3.855439e-04 3.140176e-03 
##          865          231          178          534          886 
## 2.701242e-03 6.893292e-03 1.486196e-04 1.688133e-04 8.713539e-05 
##          429          894          912          275          433 
## 5.347727e-04 3.408389e-04 2.003331e-03 6.288157e-05 3.738998e-03 
##          939          792          366          784          591 
## 2.218172e-05 5.097641e-07 2.419257e-03 3.052726e-05 1.488131e-05 
##          445          805          339          593          730 
## 2.849974e-04 1.873398e-03 2.676763e-04 6.344868e-06 3.053428e-03 
##          503          161           62            5          391 
## 2.201347e-04 4.070085e-04 1.723693e-05 1.176608e-02 2.064026e-04 
##          332          597          758           54          668 
## 1.551116e-03 3.636871e-04 4.336485e-05 9.352940e-06 1.408614e-06 
##          566          945          443          120          504 
## 2.026515e-04 2.707292e-05 4.883172e-05 4.853041e-04 2.019840e-02 
##          319          342          889          698          151 
## 1.668301e-04 1.021919e-03 2.705196e-04 1.095857e-02 1.390913e-04 
##          902          796          285          130          643 
## 2.329952e-03 3.709585e-04 1.054947e-04 1.009158e-03 8.233072e-05 
##          435          437          727          502          217 
## 3.632833e-03 5.091075e-04 3.520880e-05 2.107693e-02 3.657092e-04 
##          184          937          392          543          627 
## 1.198392e-05 5.509620e-04 6.997071e-04 4.522341e-06 2.246271e-06 
##          553          228          775          476           77 
## 4.653296e-03 2.079385e-02 3.022476e-05 6.964139e-03 6.132318e-03 
##          926          599          213          330          669 
## 2.151033e-03 3.337791e-05 9.725473e-04 4.117986e-03 2.391684e-04
length(which(out>=1))
## [1] 0
# 不存在離群值 #

# 檢測共線性 #
vif(modle1.1)
##   Cement    Blast   FlyAsh    Water      Age 
## 2.028632 1.720565 2.291008 1.141951 1.189933
# 檢測影響點 #
eff <- cooks.distance(modle1.1)
eff
##          380           18          774          140          970 
## 7.185198e-05 5.150208e-03 1.917560e-04 3.789731e-04 6.444140e-04 
##          562          762          287         1015          462 
## 1.974346e-04 1.808328e-02 4.954777e-04 1.831638e-03 5.492571e-03 
##          998           41          114          143          677 
## 2.019569e-04 1.335852e-07 3.904121e-03 1.518696e-04 1.110544e-06 
##          183          420          241          251          746 
## 1.522640e-04 1.956484e-04 4.451270e-05 5.589898e-05 2.300718e-03 
##          653          313          838          364           88 
## 4.893172e-05 6.415617e-04 2.702383e-04 2.948498e-04 3.718393e-03 
##          351          600          944           61         1005 
## 3.331349e-03 4.292651e-05 1.662274e-04 3.436463e-04 1.157055e-04 
##          267          352          541          199          906 
## 2.968464e-03 1.902841e-03 3.223880e-05 5.396380e-05 4.091397e-04 
##           78          341          989          712          255 
## 2.684107e-03 1.779255e-03 1.431459e-05 2.199750e-04 9.872104e-05 
##          873          347          471          845          582 
## 1.313461e-05 1.897007e-03 1.475547e-04 2.078355e-03 2.421878e-05 
##           29          681          896          750          175 
## 5.602958e-04 8.477336e-06 1.623626e-03 2.774408e-03 4.824477e-05 
##          278          375          650          438          413 
## 2.262774e-03 5.562240e-05 7.408297e-05 3.781083e-03 2.275658e-04 
##          208          367          660          580         1011 
## 1.220810e-03 1.459393e-03 1.022206e-04 3.824184e-04 1.546565e-03 
##          656          536          309          400          542 
## 8.411397e-06 3.670029e-04 1.800716e-04 7.574795e-04 1.642123e-04 
##          644          767          837          201          719 
## 1.668121e-04 3.920933e-04 2.467008e-04 1.263043e-04 9.188111e-03 
##          688          368          590          294          990 
## 6.436413e-07 6.861298e-04 4.301725e-06 7.832775e-05 1.281989e-03 
##          552          338          484          900          498 
## 4.257244e-05 4.338202e-04 4.903211e-05 1.710622e-04 4.133042e-04 
##          383          947          701          850          716 
## 1.245367e-03 2.287444e-04 1.117334e-03 1.485097e-04 2.395916e-06 
##          479          779          713          933          492 
## 7.159151e-03 4.577298e-05 2.226930e-05 5.525190e-03 6.943164e-04 
##          907          586          526           64          697 
## 6.502930e-04 1.917726e-04 5.803358e-03 5.743124e-03 7.626695e-07 
##          108          427          164           13          940 
## 7.474722e-04 5.570479e-05 2.070667e-05 1.573826e-02 1.005033e-04 
##          249          606          315          922          683 
## 2.610149e-05 3.162560e-06 6.570085e-04 1.409728e-04 2.615108e-04 
##          983          431          946           89          141 
## 3.538339e-04 5.387260e-05 1.458375e-04 6.590086e-03 7.575136e-05 
##          971          344          421          763          568 
## 1.115337e-03 5.227766e-04 1.430528e-04 1.729046e-04 2.898238e-04 
##         1020          628          403          861          572 
## 3.108463e-03 5.529957e-06 9.362913e-04 1.003689e-03 3.079286e-05 
##          523          941          592          638          988 
## 2.701651e-04 1.528329e-05 3.743069e-04 3.071557e-04 3.145912e-05 
##         1013          373           81          817          651 
## 2.957574e-03 1.519689e-03 4.246689e-03 1.680078e-03 2.325119e-06 
##           66          714          686          322          109 
## 5.434705e-06 1.661612e-06 3.230784e-04 2.230489e-03 9.140934e-04 
##          206          358          995           47         1024 
## 5.768665e-05 6.981245e-04 2.659061e-04 4.728074e-04 2.220763e-04 
##           57          676          967          691          742 
## 8.030113e-06 2.414049e-05 1.762114e-05 6.988706e-06 3.404347e-04 
##          675          177          361          463          731 
## 1.029437e-04 4.824477e-05 2.551376e-03 1.294071e-03 4.993586e-05 
##          528          374          165          415          561 
## 6.038305e-03 3.656264e-05 1.875687e-05 2.140024e-05 5.325721e-04 
##          736           23          252          524          583 
## 4.205314e-06 4.736946e-03 1.504717e-04 2.701651e-04 1.932891e-03 
##         1004          706          822          171           39 
## 8.000828e-04 6.764469e-05 3.376494e-05 4.882266e-06 2.530711e-02 
##         1012          243          876          603          539 
## 1.214235e-03 4.070191e-03 2.261957e-05 1.791278e-02 3.404347e-04 
##          891          836          615           45          318 
## 1.643454e-04 1.341456e-04 1.174514e-02 2.961017e-04 8.363805e-04 
##          973          220          560          986          570 
## 9.661196e-05 4.348217e-05 6.498453e-05 2.404238e-04 4.467813e-05 
##          930          987           60          770          454 
## 1.680698e-03 1.687410e-03 2.290162e-04 4.993586e-05 1.316083e-04 
##          620          966          766          371          626 
## 1.237144e-01 1.328431e-05 2.566252e-04 2.849028e-04 2.526496e-06 
##           91          333          489          855          456 
## 3.718393e-03 4.998428e-04 3.612332e-03 1.209045e-03 5.173450e-03 
##          924           84          781          529          513 
## 9.644218e-05 4.970561e-03 1.370968e-05 9.424355e-05 3.842896e-04 
##          867          519          728          335          636 
## 2.264024e-04 2.180928e-03 7.492060e-05 5.275838e-04 5.522161e-05 
##          381          811          870          915          984 
## 1.607271e-03 4.386052e-05 6.158914e-05 6.049965e-04 1.328431e-05 
##          869         1010          694          982          617 
## 5.513626e-04 8.654955e-03 7.544213e-05 1.105327e-04 2.585744e-06 
##          749          920          905          579            4 
## 3.097030e-03 3.478708e-04 2.985659e-05 3.648923e-05 4.045541e-06 
##          932          396           30          444          782 
## 5.010604e-04 2.856480e-04 4.107086e-06 8.519303e-05 3.065360e-05 
##          921            6          292          682          324 
## 1.361857e-05 2.228969e-07 2.887160e-03 6.361666e-06 4.636952e-04 
##           44           53          963          550          369 
## 4.543429e-03 1.098307e-02 1.727640e-04 1.912543e-04 1.316835e-04 
##          349           86          864          551          574 
## 5.199707e-04 3.718393e-03 1.510432e-04 3.852600e-06 1.124431e-05 
##          148          517          795           72          440 
## 2.177314e-05 1.461089e-05 2.872242e-06 6.132318e-03 8.986135e-05 
##          258         1000          470           87          607 
## 2.678160e-03 4.812145e-03 2.783713e-03 4.352607e-03 5.662369e-06 
##          664          516           36          703          190 
## 3.655573e-05 1.252727e-05 1.055924e-04 2.182669e-05 1.509592e-05 
##          521          259          624          117          738 
## 4.431603e-04 6.794455e-05 3.838276e-05 9.730320e-04 1.984333e-05 
##          755          494          610          196          449 
## 6.301793e-07 1.160265e-04 1.242242e-01 6.811370e-05 1.216035e-03 
##         1018          525          689          885          191 
## 1.001278e-03 5.803358e-03 2.609802e-05 1.702337e-04 2.481514e-05 
##          657          288          409          500          745 
## 1.881627e-06 2.591018e-03 1.340682e-04 3.746800e-04 3.223016e-05 
##          530          455          509          512          846 
## 9.424355e-05 2.069125e-03 1.575281e-04 1.027503e-02 1.225860e-03 
##          336          853          125          601          173 
## 1.815574e-03 8.758443e-03 7.529716e-05 7.135865e-05 7.417773e-05 
##          284          578          147           73          459 
## 7.292260e-05 3.433011e-04 2.521308e-04 6.707939e-03 1.495145e-03 
##          860          527          961          138          168 
## 7.635597e-04 6.038305e-03 7.387629e-03 9.090088e-04 2.161607e-06 
##          887          976          803          131          155 
## 5.107010e-03 6.673673e-04 1.688133e-04 3.301233e-04 1.584072e-04 
##          623          848          378           46          328 
## 1.497702e-05 1.161802e-04 5.956902e-03 4.993586e-05 8.510213e-04 
##          658          430           93          793          918 
## 3.655877e-04 2.977442e-05 8.735749e-04 1.133017e-05 1.977726e-05 
##          575          302          350          908          257 
## 1.023718e-05 1.098763e-03 7.159672e-04 1.092238e-03 4.129061e-03 
##          248          901          810          705          314 
## 3.134544e-03 2.480331e-04 1.998960e-05 1.469210e-06 4.744665e-04 
##          465          179          842          247          854 
## 1.198232e-03 4.824477e-05 1.595533e-04 1.167657e-04 1.588727e-03 
##          761          979          567          158          729 
## 8.823868e-04 4.023390e-03 1.655074e-05 1.006361e-04 8.941013e-04 
##          159          280          340          799          556 
## 3.494463e-05 6.288157e-05 3.393807e-04 8.443351e-04 7.384088e-04 
##          735          826          632          581          788 
## 2.606594e-03 1.817063e-03 1.019360e-04 1.692352e-04 5.730802e-05 
##          299          820         1028          223          122 
## 1.969480e-04 6.717553e-08 6.770255e-05 1.554551e-03 3.192207e-05 
##          163          760          802          200         1007 
## 1.132528e-04 2.137730e-04 1.350116e-04 7.799815e-05 1.457775e-04 
##          943          269          412          290          609 
## 9.373306e-06 5.964569e-05 2.680648e-04 6.218343e-05 6.247174e-03 
##          868          642          718          670          804 
## 1.073494e-03 1.788378e-05 1.736413e-06 4.309591e-03 3.670029e-04 
##          176          134          791          216          892 
## 3.345951e-05 4.200543e-04 6.509779e-04 1.266877e-04 6.003199e-05 
##          153          365          968          835          493 
## 3.750334e-04 3.932787e-04 2.906097e-05 1.921621e-04 6.943164e-04 
##          414          916          310          598           56 
## 3.866187e-05 4.030752e-03 2.266737e-04 2.891428e-05 8.088256e-08 
##          909           34          181          376          263 
## 2.419149e-05 1.491655e-05 8.621338e-06 9.532991e-05 2.675688e-03 
##          665           75          844          722          794 
## 3.618528e-06 6.614375e-03 3.266342e-03 1.998960e-05 1.152100e-02 
##          154         1027          360          880          188 
## 1.172531e-04 6.141561e-05 1.444579e-03 9.708394e-06 4.142415e-03 
##          996          227           24          236           92 
## 3.650381e-05 1.028809e-02 1.805657e-06 6.883764e-03 1.516923e-03 
##          654          229          508          936          679 
## 4.232587e-06 1.787549e-05 9.399492e-03 1.325675e-05 1.818387e-05 
##          167          540          645          732          222 
## 2.040541e-05 1.817063e-03 2.537192e-04 5.730802e-05 2.207223e-04 
##          461            9          778          616          776 
## 1.476298e-03 1.210010e-03 2.059704e-05 1.226360e-01 6.541757e-05 
##         1006          410          602          806          618 
## 3.715509e-05 1.943723e-04 8.591409e-04 2.022842e-04 1.126561e-04 
##          416          877          326          357           85 
## 3.862031e-04 1.027630e-04 3.940245e-03 1.571186e-03 4.962436e-03 
##          629          871          824          559          965 
## 4.148435e-06 6.601547e-05 1.962535e-05 7.544065e-03 2.331361e-03 
##          753          283           17          881          495 
## 2.922345e-04 2.262774e-03 2.713124e-06 1.702337e-04 1.160265e-04 
##          878           26          112          452          522 
## 1.490525e-05 1.354922e-05 6.907186e-04 2.430953e-03 1.235378e-03 
##          950           90          662           11          955 
## 1.198891e-03 3.257893e-04 6.102292e-05 2.090358e-05 5.930257e-05 
##          825          563          219          613          240 
## 5.498560e-04 9.706583e-04 2.946756e-05 7.474370e-06 2.732902e-05 
##          160          405          980          733          446 
## 1.584072e-04 2.596814e-04 5.722436e-05 1.185507e-04 2.574928e-03 
##          833          348          487          447           31 
## 1.263372e-03 7.077685e-04 3.096808e-04 2.415430e-03 6.264984e-06 
##           40          281          715          862           69 
## 1.084425e-02 9.698863e-05 2.117130e-04 2.620765e-05 3.123289e-04 
##          499          307          809          401          604 
## 7.365914e-04 1.335272e-03 1.538723e-05 7.061867e-04 1.302212e-01 
##          571          466          834          859          404 
## 4.590833e-03 1.766336e-03 5.506566e-03 1.759536e-04 3.967888e-04 
##          436          135          442          759          327 
## 4.498389e-04 2.975715e-04 3.472443e-03 7.264292e-05 2.247795e-03 
##          957          301           76          118           14 
## 3.448103e-04 3.432704e-04 9.980120e-05 2.236707e-04 1.593775e-02 
##          672          952          786          152          110 
## 3.084592e-06 2.667909e-04 7.492060e-05 1.584072e-04 4.690685e-03 
##          985          879           59          170          102 
## 1.421104e-04 1.765439e-03 2.226235e-04 8.157878e-05 1.966163e-04 
##          472          468          702          354          353 
## 1.475547e-04 8.508808e-04 9.776016e-06 3.209163e-04 7.110637e-04 
##           50          242          408           16          210 
## 2.719971e-02 1.304488e-04 1.030053e-04 3.673380e-04 2.731114e-05 
##          904          244           21          649          372 
## 1.789290e-05 1.924851e-05 2.226710e-05 2.055167e-05 7.553574e-04 
##          419          684          903          481          297 
## 5.703673e-05 3.907338e-03 1.361857e-05 4.903211e-05 5.241785e-04 
##          927          890          757          700          974 
## 1.397536e-03 2.213612e-05 3.358893e-05 5.497093e-06 6.244620e-05 
##          685          533          584          667         1029 
## 6.473811e-06 9.739582e-06 2.585111e-03 4.873449e-04 1.566665e-04 
##          942          954          821          723          402 
## 1.770766e-03 1.676714e-04 1.975666e-05 4.386052e-05 1.927731e-03 
##          356          520          246          997          215 
## 2.730939e-03 4.015394e-04 4.246159e-05 1.761576e-03 7.815060e-05 
##           10          981          588         1003          929 
## 3.160110e-04 2.021707e-05 8.785347e-06 1.246318e-03 2.778754e-04 
##           55          695          296           71          239 
## 9.337630e-06 5.848383e-06 1.826179e-04 3.683052e-03 1.878624e-05 
##          898          849         1001          612          394 
## 7.431488e-03 3.635586e-05 3.329720e-03 1.996926e-05 3.150624e-03 
##          126           98          751          150          772 
## 2.236707e-04 5.424195e-04 7.127644e-04 2.546530e-04 1.917560e-04 
##          648          162          577          203          841 
## 1.242738e-05 4.628006e-05 2.684535e-05 2.881021e-03 2.054861e-04 
##          432          884          764          754          475 
## 9.470917e-05 2.285355e-04 1.838172e-04 2.329224e-05 6.964139e-03 
##          450          506          474          991           95 
## 2.656907e-03 1.100451e-04 1.475547e-04 5.527998e-03 5.284379e-04 
##          384          544          548          390          518 
## 2.856480e-04 1.135201e-05 2.560905e-05 2.164848e-03 1.074710e-04 
##          895          634          934          910          856 
## 1.003947e-03 3.158486e-05 3.706896e-04 9.647425e-05 2.901975e-03 
##          977          717          237           63          797 
## 1.770766e-03 4.389810e-06 4.966614e-03 8.001660e-04 1.298975e-05 
##          883          789          978           80          115 
## 1.421191e-04 1.185507e-04 6.152142e-04 6.132318e-03 1.625559e-03 
##          558          585          631          142          773 
## 1.993793e-04 6.680012e-04 4.822008e-05 6.992262e-05 3.644047e-04 
##          696          655          156          282          913 
## 2.725883e-06 5.710542e-05 5.214301e-04 2.640481e-04 6.422915e-04 
##          230           38            1          743          185 
## 2.600977e-05 4.117595e-03 1.615417e-04 5.254017e-04 1.730653e-05 
##          295          709          969          557          441 
## 1.129272e-04 1.375343e-04 4.222931e-04 1.060373e-04 4.758836e-05 
##          422          678          346          418          407 
## 1.879051e-04 4.873993e-04 3.323723e-03 3.791309e-05 1.390805e-04 
##           99          359          832          483          370 
## 8.290172e-05 1.084160e-03 1.444291e-05 4.903211e-05 1.838640e-04 
##          741          666          204          888          182 
## 2.328366e-03 1.891514e-04 2.598737e-05 2.243589e-05 4.824477e-05 
##          337          316          478          482          238 
## 1.007246e-03 9.929421e-04 3.560014e-04 4.903211e-05 4.112233e-03 
##         1022          458           33          535          300 
## 2.801515e-03 1.895377e-03 5.126136e-06 1.873398e-03 2.495258e-04 
##          123          146          186          511          137 
## 2.236707e-04 7.575136e-05 2.785380e-05 9.702368e-05 4.200543e-04 
##          711          323          393          911           42 
## 1.381962e-03 1.195689e-03 2.423498e-03 6.336842e-05 1.458661e-01 
##          687          828          116          406          211 
## 3.639585e-03 1.178641e-04 4.000345e-04 3.871000e-05 4.453712e-05 
##          928          453          780          919          813 
## 1.456093e-03 2.602925e-04 1.069983e-05 1.120756e-04 1.562342e-02 
##          491          994          734          385          467 
## 3.761997e-03 2.462608e-04 3.708437e-03 3.855439e-04 3.140176e-03 
##          865          231          178          534          886 
## 2.701242e-03 6.893292e-03 1.486196e-04 1.688133e-04 8.713539e-05 
##          429          894          912          275          433 
## 5.347727e-04 3.408389e-04 2.003331e-03 6.288157e-05 3.738998e-03 
##          939          792          366          784          591 
## 2.218172e-05 5.097641e-07 2.419257e-03 3.052726e-05 1.488131e-05 
##          445          805          339          593          730 
## 2.849974e-04 1.873398e-03 2.676763e-04 6.344868e-06 3.053428e-03 
##          503          161           62            5          391 
## 2.201347e-04 4.070085e-04 1.723693e-05 1.176608e-02 2.064026e-04 
##          332          597          758           54          668 
## 1.551116e-03 3.636871e-04 4.336485e-05 9.352940e-06 1.408614e-06 
##          566          945          443          120          504 
## 2.026515e-04 2.707292e-05 4.883172e-05 4.853041e-04 2.019840e-02 
##          319          342          889          698          151 
## 1.668301e-04 1.021919e-03 2.705196e-04 1.095857e-02 1.390913e-04 
##          902          796          285          130          643 
## 2.329952e-03 3.709585e-04 1.054947e-04 1.009158e-03 8.233072e-05 
##          435          437          727          502          217 
## 3.632833e-03 5.091075e-04 3.520880e-05 2.107693e-02 3.657092e-04 
##          184          937          392          543          627 
## 1.198392e-05 5.509620e-04 6.997071e-04 4.522341e-06 2.246271e-06 
##          553          228          775          476           77 
## 4.653296e-03 2.079385e-02 3.022476e-05 6.964139e-03 6.132318e-03 
##          926          599          213          330          669 
## 2.151033e-03 3.337791e-05 9.725473e-04 4.117986e-03 2.391684e-04
# 檢測標準 #
qf(0.5,6,720-6)
## [1] 0.8921954
length(which(as.vector(eff) > qf(0.5,6,720)))
## [1] 0
# 逐步回歸 #
step(modle1.0,direction = 'both')
## Start:  AIC=589.76
## over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Coarse + Fine + Age + Water * Superplasticizer
## 
##                          Df Deviance    AIC
## - Fine                    1   569.77 587.77
## - Water:Superplasticizer  1   570.10 588.10
## - Coarse                  1   570.27 588.27
## <none>                        569.76 589.76
## - FlyAsh                  1   579.36 597.36
## - Blast                   1   582.27 600.27
## - Cement                  1   610.72 628.72
## - Age                     1   713.33 731.33
## 
## Step:  AIC=587.77
## over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Coarse + Age + Water:Superplasticizer
## 
##                          Df Deviance    AIC
## - Water:Superplasticizer  1   570.11 586.11
## - Coarse                  1   570.98 586.98
## <none>                        569.77 587.77
## + Fine                    1   569.76 589.76
## - FlyAsh                  1   590.61 606.61
## - Blast                   1   610.78 626.78
## - Cement                  1   707.57 723.57
## - Age                     1   713.34 729.34
## 
## Step:  AIC=586.11
## over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Coarse + Age
## 
##                          Df Deviance    AIC
## - Coarse                  1   571.22 585.22
## <none>                        570.11 586.11
## - Superplasticizer        1   573.50 587.50
## + Water:Superplasticizer  1   569.77 587.77
## + Fine                    1   570.10 588.10
## - Water                   1   580.39 594.39
## - FlyAsh                  1   593.80 607.80
## - Blast                   1   612.35 626.35
## - Cement                  1   707.75 721.75
## - Age                     1   726.66 740.66
## 
## Step:  AIC=585.22
## over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Age
## 
##                          Df Deviance    AIC
## <none>                        571.22 585.22
## - Superplasticizer        1   573.68 585.68
## + Coarse                  1   570.11 586.11
## + Fine                    1   570.60 586.60
## + Water:Superplasticizer  1   570.98 586.98
## - Water                   1   590.11 602.11
## - FlyAsh                  1   593.81 605.81
## - Blast                   1   613.95 625.95
## - Cement                  1   716.78 728.78
## - Age                     1   728.57 740.57
## 
## Call:  glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Age, family = binomial(link = "logit"), data = concrete_train, 
##     na.action = na.exclude)
## 
## Coefficients:
##      (Intercept)            Cement             Blast            FlyAsh  
##         -3.06354           0.01621           0.01049           0.01242  
##            Water  Superplasticizer               Age  
##         -0.02847           0.04599           0.02513  
## 
## Degrees of Freedom: 719 Total (i.e. Null);  713 Residual
## Null Deviance:       943 
## Residual Deviance: 571.2     AIC: 585.2
# 機器學習 #
# 逐步回歸模型 #
modle_train <- glm(formula = over400 ~ Cement+ Blast+ FlyAsh+ Water+ Superplasticizer 
                   +Age, family=binomial(link="logit"), data = concrete_train)
AIC(modle_train)
## [1] 585.2244
result <- predict(modle_train, newdata = concrete_test, type = "response")
result_Approved <- ifelse(result > 0.7, 1, 0)
cm <- table(concrete_test$over400, result_Approved, dnn = c("實際", "預測"))
cm
##     預測
## 實際   0   1
##    0 179  13
##    1  60  57
cm[4] / sum(cm[, 2])
## [1] 0.8142857
cm[1] / sum(cm[, 1])
## [1] 0.748954
accuracy <- sum(diag(cm)) / sum(cm)
accuracy
## [1] 0.763754
# 機器學習 #
# 原始模型刪減不顯著係數之變數 #
modle_train <- glm(formula = over400 ~ Cement+ Blast+ FlyAsh+ Water 
                   +Age, family=binomial(link="logit"), data = concrete_train)
AIC(modle_train)
## [1] 585.6844
result <- predict(modle_train, newdata = concrete_test, type = "response")
result_Approved <- ifelse(result > 0.7, 1, 0)
cm <- table(concrete_test$over400, result_Approved, dnn = c("實際", "預測"))
cm
##     預測
## 實際   0   1
##    0 180  12
##    1  60  57
cm[4] / sum(cm[, 2])
## [1] 0.826087
cm[1] / sum(cm[, 1])
## [1] 0.75
accuracy <- sum(diag(cm)) / sum(cm)
accuracy
## [1] 0.7669903
#
# 最終模型確認 #
modle_final <- glm(formula = over400 ~ Cement+ Blast+ FlyAsh+ Water+ Superplasticizer
 + Age, family = binomial(link = "logit"), data =concrete_train, na.action = na.exclude)
summary(modle_final)
## 
## Call:
## glm(formula = over400 ~ Cement + Blast + FlyAsh + Water + Superplasticizer + 
##     Age, family = binomial(link = "logit"), data = concrete_train, 
##     na.action = na.exclude)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.4635  -0.5833  -0.2988   0.5307   2.5170  
## 
## Coefficients:
##                   Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -3.063542   1.405969  -2.179   0.0293 *  
## Cement            0.016212   0.001592  10.184  < 2e-16 ***
## Blast             0.010488   0.001639   6.398 1.57e-10 ***
## FlyAsh            0.012423   0.002706   4.592 4.40e-06 ***
## Water            -0.028466   0.006881  -4.137 3.52e-05 ***
## Superplasticizer  0.045985   0.029515   1.558   0.1192    
## Age               0.025126   0.002876   8.737  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 942.97  on 719  degrees of freedom
## Residual deviance: 571.22  on 713  degrees of freedom
## AIC: 585.22
## 
## Number of Fisher Scoring iterations: 5
#畫ROC曲線
pred <- prediction(result, concrete_test$over400)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
#計算AUC
auc <- performance(pred, "auc")

#畫圖
plot(perf, col = rainbow(5), main = "ROC curve", xlab = "1 - Specificity(FPR)", ylab = "Sensitivity(TPR)")

abline(0, 1)
#實際AUC值
text(0.5, 0.5,paste0("AUC= ",as.character(auc@y.values[[1]])))